▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

All those Ramsey classes

Ramsey classes with closures and forbidden homomorphisms

Jan Hubička

Computer Science Institute of Charles University Charles University Prague

Joint work with Jaroslav Nešetřil

Logic Colloquium 2016, Leeds

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Ramsey Theorem

Theorem (Ramsey Theorem, 1930)

$$\forall_{n,p,k\geq 1} \exists_N : N \longrightarrow (n)_k^p.$$

うして 山田 マイボマ エリア しょう

Ramsey Theorem

Theorem (Ramsey Theorem, 1930)

$$\forall_{n,p,k\geq 1}\exists_N:N\longrightarrow (n)_k^p.$$

 $N \longrightarrow (n)_k^p$: For every partition of $\binom{\{1,2,\dots,N\}}{p}$ into *k* classes (colors) there exists $X \subseteq \{1,2,\dots,N\}, |X| = n$ such that $\binom{X}{p}$ belongs to single partition (it is monochromatic)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Ramsey Theorem

Theorem (Ramsey Theorem, 1930)

$$\forall_{n,p,k\geq 1} \exists_N : N \longrightarrow (n)_k^p.$$

 $N \longrightarrow (n)_k^p$: For every partition of $\binom{\{1,2,\dots,N\}}{p}$ into *k* classes (colors) there exists $X \subseteq \{1,2,\dots,N\}$, |X| = n such that $\binom{X}{p}$ belongs to single partition (it is monochromatic)

For p = 2, n = 3, k = 2 put N = 6

Many aspects of Ramsey theorem

Ramsey theorem

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = 釣�(♡

Many aspects of Ramsey theorem

Many aspects of Ramsey theorem

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

5900

1

Many aspects of Ramsey theorem

Many aspects of Ramsey theorem

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ ○ のへで

Ramsey theorem for finite relational structures

Let *L* be a purely relational language with binary relation \leq . Denote by $\overrightarrow{Rel}(L)$ the class of all finite *L*-structures where \leq is a linear order.

Theorem (Nešetřil-Rödl, 1977; Abramson-Harrington, 1978)

$$\forall_{\mathbf{A},\mathbf{B}\in\overrightarrow{\textit{Rel}}(L)}\exists_{\mathbf{C}\in\overrightarrow{\textit{Rel}}(L)}:\mathbf{C}\longrightarrow(\mathbf{B})_{2}^{\mathbf{A}}.$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Ramsey theorem for finite relational structures

Let *L* be a purely relational language with binary relation \leq . Denote by $\overrightarrow{Rel}(L)$ the class of all finite *L*-structures where \leq is a linear order.

Theorem (Nešetřil-Rödl, 1977; Abramson-Harrington, 1978)

$$\forall_{\mathbf{A},\mathbf{B}\in\overrightarrow{\textit{Rel}}(L)}\exists_{\mathbf{C}\in\overrightarrow{\textit{Rel}}(L)}:\mathbf{C}\longrightarrow(\mathbf{B})_{2}^{\mathbf{A}}.$$

Theorem (Ramsey Theorem, 1930)

$$\forall_{n,p,k\geq 1}\exists_N:N\longrightarrow (n)_k^p.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Ramsey theorem for finite relational structures

Let *L* be a purely relational language with binary relation \leq . Denote by $\overrightarrow{Rel}(L)$ the class of all finite *L*-structures where \leq is a linear order.

Theorem (Nešetřil-Rödl, 1977; Abramson-Harrington, 1978)

$$\forall_{\mathbf{A},\mathbf{B}\in\overrightarrow{\textit{Rel}}(L)}\exists_{\mathbf{C}\in\overrightarrow{\textit{Rel}}(L)}:\mathbf{C}\longrightarrow(\mathbf{B})_{2}^{\mathbf{A}}.$$

 $\begin{pmatrix} B \\ A \end{pmatrix}$ is the set of all substructures of **B** isomorphic to **A**.

 $C \longrightarrow (B)_2^A$: For every 2-colouring of $\binom{C}{A}$ there exists $\widetilde{B} \in \binom{C}{B}$ such that $\binom{\widetilde{B}}{A}$ is monochromatic.

Ramsey theorem for finite relational structures

Let *L* be a purely relational language with binary relation \leq . Denote by $\overrightarrow{Rel}(L)$ the class of all finite *L*-structures where \leq is a linear order.

Theorem (Nešetřil-Rödl, 1977; Abramson-Harrington, 1978)

$$\forall_{\mathbf{A},\mathbf{B}\in\overrightarrow{\textit{Rel}}(L)}\exists_{\mathbf{C}\in\overrightarrow{\textit{Rel}}(L)}:\mathbf{C}\longrightarrow(\mathbf{B})_{2}^{\mathbf{A}}.$$

 $\begin{pmatrix} B \\ A \end{pmatrix}$ is the set of all substructures of **B** isomorphic to **A**.

 $C \longrightarrow (B)_2^A$: For every 2-colouring of $\binom{C}{A}$ there exists $\widetilde{B} \in \binom{C}{B}$ such that $\binom{\widetilde{B}}{A}$ is monochromatic.

Ramsey theorem for finite relational structures

Let *L* be a purely relational language with binary relation \leq . Denote by $\overrightarrow{Rel}(L)$ the class of all finite *L*-structures where \leq is a linear order.

Theorem (Nešetřil-Rödl, 1977; Abramson-Harrington, 1978)

$$\forall_{\mathbf{A},\mathbf{B}\in\overrightarrow{\textit{Rel}}(L)}\exists_{\mathbf{C}\in\overrightarrow{\textit{Rel}}(L)}:\mathbf{C}\longrightarrow(\mathbf{B})_{2}^{\mathbf{A}}.$$

 $\begin{pmatrix} B \\ A \end{pmatrix}$ is the set of all substructures of **B** isomorphic to **A**.

 $C \longrightarrow (B)_2^A$: For every 2-colouring of $\binom{C}{A}$ there exists $\widetilde{B} \in \binom{C}{B}$ such that $\binom{\widetilde{B}}{A}$ is monochromatic.

Order is necessary

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Order is necessary

Vertices of **C** can be linearly ordered and edges coloured accordingly:

- If edge is goes forward in linear order it is red
- blue otherwise.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Structural extensions

Ramsey theorem for finite relational structures

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = 釣�(♡

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

€ 990

= √Q (~

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Ramsey theorem for finite models

Let *L* be a language with both relations and functions.

Assume that *L* contains binary relation \leq .

Denote by $\overrightarrow{Mod}(L)$ the class of all finite *L*-structures where \leq is a linear order.

Theorem (H.-Nešetřil, 2016)

$$\forall_{\mathbf{A},\mathbf{B}\in\overrightarrow{\textit{Mod}}(L)}\exists_{\mathbf{C}\in\overrightarrow{\textit{Mod}}(L)}:\mathbf{C}\longrightarrow(\mathbf{B})_{2}^{\mathbf{A}}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Ramsey classes

Definition

A class \mathcal{C} of finite *L*-structures is Ramsey iff $\forall_{\mathbf{A},\mathbf{B}\in\mathcal{C}} \exists_{\mathbf{C}\in\mathcal{C}} : \mathbf{C} \longrightarrow (\mathbf{B})_2^{\mathbf{A}}$.

Ramsey classes

Definition

A class C of finite *L*-structures is Ramsey iff $\forall_{A,B\in C} \exists_{C\in C} : C \longrightarrow (B)_2^A$.

Example (Linear orders — Ramsey Theorem, 1930)

The class of all finite linear orders is a Ramsey class.

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ● ●

うして 山田 マイボマ エリア しょう

Ramsey classes

Definition

A class C of finite *L*-structures is Ramsey iff $\forall_{A,B\in C} \exists_{C\in C} : C \longrightarrow (B)_2^A$.

Example (Linear orders — Ramsey Theorem, 1930)

The class of all finite linear orders is a Ramsey class.

Example (Structures — Nešetřil-Rödl, 76; Abramson-Harrington, 78)

For every relational language L, $\overrightarrow{Rel}(L)$ is a Ramsey class.

うして 山田 マイボマ エリア しょう

Ramsey classes

Definition

A class C of finite *L*-structures is Ramsey iff $\forall_{A,B\in C} \exists_{C\in C} : C \longrightarrow (B)_2^A$.

Example (Linear orders — Ramsey Theorem, 1930)

The class of all finite linear orders is a Ramsey class.

Example (Structures — Nešetřil-Rödl, 76; Abramson-Harrington, 78)

For every relational language L, $\overrightarrow{Rel}(L)$ is a Ramsey class.

Example (Partial orders — Nešetřil-Rödl, 84; Paoli-Trotter-Walker, 85)

The class of all finite partial orders with linear extension is Ramsey.

Ramsey classes

Definition

A class C of finite *L*-structures is Ramsey iff $\forall_{A,B\in C} \exists_{C\in C} : C \longrightarrow (B)_2^A$.

Example (Linear orders — Ramsey Theorem, 1930)

The class of all finite linear orders is a Ramsey class.

Example (Structures — Nešetřil-Rödl, 76; Abramson-Harrington, 78)

For every relational language L, $\overrightarrow{Rel}(L)$ is a Ramsey class.

Example (Partial orders — Nešetřil-Rödl, 84; Paoli-Trotter-Walker, 85)

The class of all finite partial orders with linear extension is Ramsey.

Example (Models — H.-Nešetřil, 2016)

For every language L, $\overrightarrow{Mod}(L)$ is a Ramsey class.

イロト 人間 とくほ とくほう Sac

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Ramsey classes are amalgamation classes

Ramsey classes are amalgamation classes

Nešetřil, 80's: Under mild assumptions Ramsey classes have amalgamation property.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Nešetřil's Classification Programme, 2005

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Nešetřil's Classification Programme, 2005

Kechris, Pestov, Todorčevič: Fraïssé Limits, Ramsey Theory, and topological dynamics of automorphism groups (2005)

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Nešetřil's Classification Programme, 2005

Kechris, Pestov, Todorčevič: Fraïssé Limits, Ramsey Theory, and topological dynamics of automorphism groups (2005)

Definition

Let *L'* be language containing language *L*. A lift (or expansion) of *L*-structure **A** is *L'*-structure **A'** on the same vertex set such that all relations/functions in $L \cap L'$ are identical.

Nešetřil's Classification Programme, 2005

Kechris, Pestov, Todorčevič: Fraïssé Limits, Ramsey Theory, and topological dynamics of automorphism groups (2005)

Definition

Let *L'* be language containing language *L*. A lift (or expansion) of *L*-structure **A** is *L'*-structure **A'** on the same vertex set such that all relations/functions in $L \cap L'$ are identical.

Theorem (Nešetřil, 1989)

All homogeneous graphs have Ramsey lift.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

Nešetřil's Classification Programme, 2005

Example

The class of finite graphs G is an amalgamation class

Nešetřil's Classification Programme, 2005

Example

- **①** The class of finite graphs \mathcal{G} is an amalgamation class
- Fraïssé limit of G is the Rado graph R

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ ⊙ < ⊙

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Nešetřil's Classification Programme, 2005

Example

- **①** The class of finite graphs \mathcal{G} is an amalgamation class
- Fraïssé limit of G is the Rado graph R
- The lift R' of R adds generic linear order
Nešetřil's Classification Programme, 2005

Example

- **①** The class of finite graphs G is an amalgamation class
- Fraïssé limit of G is the Rado graph R
- The lift R' of R adds generic linear order
- Age(R') (the class of linearly ordered finite graphs) is Ramsey

Nešetřil's Classification Programme, 2005

Example

- **①** The class of finite graphs G is an amalgamation class
- Fraïssé limit of G is the Rado graph R
- The lift R' of R adds generic linear order
- Age(R') (the class of linearly ordered finite graphs) is Ramsey

Nešetřil's Classification Programme, 2005

Example

- **①** The class of finite graphs \mathcal{G} is an amalgamation class
- Fraïssé limit of G is the Rado graph R
- The lift R' of R adds generic linear order
- Age(R') (the class of linearly ordered finite graphs) is Ramsey

Theorem (Jasiński, Laflamme, Nguyen Van Thé, Woodrow, 2014)

All homogeneous digraphs have Ramsey lift.

Does every amalgamation class have a Ramsey lift?

A question asked by Bodirsky, Nešetřil, Nguyen van Thé, Pinsker, Tsankov around 2010

Does every amalgamation class have a Ramsey lift?

A question asked by Bodirsky, Nešetřil, Nguyen van Thé, Pinsker, Tsankov around 2010

Yes: extend language by infinitely many unary relations; assign every vertex to unique relation.

Does every amalgamation class have a Ramsey lift?

A question asked by Bodirsky, Nešetřil, Nguyen van Thé, Pinsker, Tsankov around 2010

Yes: extend language by infinitely many unary relations; assign every vertex to unique relation.

Definition (Nguyen van Thé)

Let \mathcal{K} be class of *L*-structures and \mathcal{K}' be class of lifts of \mathcal{K} .

K is precompact if for every A ∈ *K* there are only finitely many lifts of A in *K*'.

Does every amalgamation class have a Ramsey lift?

A question asked by Bodirsky, Nešetřil, Nguyen van Thé, Pinsker, Tsankov around 2010

Yes: extend language by infinitely many unary relations; assign every vertex to unique relation.

Definition (Nguyen van Thé)

Let \mathcal{K} be class of *L*-structures and \mathcal{K}' be class of lifts of \mathcal{K} .

- *K* is precompact if for every A ∈ *K* there are only finitely many lifts of A in *K*'.
- K has lift property if for every A ∈ K there exists B ∈ K such that every lift of B in K' contains every lift of A in K'.

Does every amalgamation class have a Ramsey lift?

A question asked by Bodirsky, Nešetřil, Nguyen van Thé, Pinsker, Tsankov around 2010

Yes: extend language by infinitely many unary relations; assign every vertex to unique relation.

Definition (Nguyen van Thé)

Let \mathcal{K} be class of *L*-structures and \mathcal{K}' be class of lifts of \mathcal{K} .

- *K* is precompact if for every A ∈ *K* there are only finitely many lifts of A in *K*'.
- K has lift property if for every A ∈ K there exists B ∈ K such that every lift of B in K' contains every lift of A in K'.

Theorem (Kechris, Pestov, Todorčevič 2005, Nguyen van Thé 2012)

For every amalgamation class \mathcal{K} there exists, up to bi-definability, at most one Ramsey class \mathcal{K}' of lifts of \mathcal{K} with lift property.

< ロ > < 同 > < 三 > < 三 > 、 三 の Q (?)

Existence of precompact lifts

Question: Does every amalgamation class have a precompact Ramsey lift?

No: Consider \mathbb{Z} seen as a metric space.

Existence of precompact lifts

Question: Does every amalgamation class have a precompact Ramsey lift?

No: Consider \mathbb{Z} seen as a metric space.

Theorem (Evans, 2015)

There exists a countable, ω -categorical structure M which that property that its age has no precompact Ramsey lift.

Existence of precompact lifts

Question: Does every amalgamation class have a precompact Ramsey lift?

No: Consider \mathbb{Z} seen as a metric space.

Theorem (Evans, 2015)

There exists a countable, ω -categorical structure M which that property that its age has no precompact Ramsey lift.

Theorem (Evans, Hubička, Nešetřil, 2016+)

There still exists minimal (non-precompact) Ramsey lift of M with lift property.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Map of Ramsey Classes

Map of Ramsey Classes

interval graphs

permutations

cyclic orders

unions of complete graphs

linear orders

restricted

free

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Ramsey classes with constraints

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Map of Ramsey Classes

interval graphs	metric spaces
permutations	acyclic graphs
cyclic orders	partial orders <i>K_n</i> -free graphs
unions of complete graphs	
linear orders	graphs
restricted	free

Ramsey classes with constraints

Map of Ramsey Classes

interval graphs permutations cyclic orders unions of complete g linear orders

metric spaces

acyclic graphs partial orders K_n -free graphs graphs

restricted

free

From an amalgamation class to a Ramsey class

The Nešetřil-Rödl partite construction of Ramsey object demands more complicated (multi)amalgamations.

ヘロト ヘロト ヘヨト ヘヨト 一日

Sac

$\langle \mathbf{A}, \mathbf{B}, \mathbf{C} \rangle$ -hypergraphs

Definition

Given structures **A**, **B**, **C** the $\langle \mathbf{A}, \mathbf{B}, \mathbf{C} \rangle$ -hypergraph is a hypergraph whose vertices are copies of **A** in **C** and hyper-edges are corresponds to copies of **B**: *M* is an hyper-edge if $M = \widetilde{\mathbf{B}}$ for some $\widetilde{\mathbf{B}} \in {\binom{\mathbf{C}}{\mathbf{B}}}$

うして 山田 マイボマ エリア しょう

$\langle \mathbf{A}, \mathbf{B}, \mathbf{C} \rangle$ -hypergraphs

Definition

Given structures **A**, **B**, **C** the $\langle \mathbf{A}, \mathbf{B}, \mathbf{C} \rangle$ -hypergraph is a hypergraph whose vertices are copies of **A** in **C** and hyper-edges are corresponds to copies of **B**: *M* is an hyper-edge if $M = \widetilde{\mathbf{B}}$ for some $\widetilde{\mathbf{B}} \in {\binom{\mathbf{C}}{\mathbf{B}}}$

If the $\langle \mathbf{A}, \mathbf{B}, \mathbf{C} \rangle$ -hypegraph has chromatic number 3, then $C \longrightarrow (\mathbf{B})_2^{\mathbf{A}}$

$\langle \mathbf{A}, \mathbf{B}, \mathbf{C} \rangle$ -hypergraphs

Definition

Given structures **A**, **B**, **C** the $\langle \mathbf{A}, \mathbf{B}, \mathbf{C} \rangle$ -hypergraph is a hypergraph whose vertices are copies of **A** in **C** and hyper-edges are corresponds to copies of **B**: *M* is an hyper-edge if $M = \widetilde{\mathbf{B}}$ for some $\widetilde{\mathbf{B}} \in {\binom{\mathbf{C}}{\mathbf{B}}}$

If the $\langle \mathbf{A}, \mathbf{B}, \mathbf{C} \rangle$ -hypegraph has chromatic number 3, then $C \longrightarrow (\mathbf{B})_2^{\mathbf{A}}$

Hypergraphs of large chromatic number are known to exists, but typically they do not correspond to $\langle A, B, C \rangle$ -hypergraph

Structure is irreducible if every pair of vertices is contained in some tuple of some relation

We consider classes of irreducible structures and split amalgamation into two steps:

Our approach

Structure is irreducible if every pair of vertices is contained in some tuple of some relation

We consider classes of irreducible structures and split amalgamation into two steps:

Our approach

Structure is irreducible if every pair of vertices is contained in some tuple of some relation

We consider classes of irreducible structures and split amalgamation into two steps:

- free amalgamation,
- 2 completion.

Our approach

Structure is irreducible if every pair of vertices is contained in some tuple of some relation

We consider classes of irreducible structures and split amalgamation into two steps:

free amalgamation,

2 completion.

Definition

Irreducible structure \mathbf{C}' is a strong completion of \mathbf{C} if it has the same vertex set and every irreducible substructure of C is also (induced) substructure of C'.

ヘロト 人間 ト 人 ヨト 人 ヨト 二 ヨ

5900

Our approach

Theorem (H.-Nešetřil, 2016)

Let \mathcal{R} be a Ramsey class of irreducible finite structures and let \mathcal{K} be a hereditary locally finite subclass of \mathcal{R} with strong amalgamation. Then \mathcal{K} is Ramsey.

・ コ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Sac

Our approach

Theorem (H.-Nešetřil, 2016)

Let \mathcal{R} be a Ramsey class of irreducible finite structures and let \mathcal{K} be a hereditary locally finite subclass of \mathcal{R} with strong amalgamation. Then \mathcal{K} is Ramsey.

Schematically

What is local finiteness?

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 \mathcal{K} is locally finite subclass of \mathcal{R} if for every \mathbf{C}_0 in \mathcal{R} there exists a finite bound on minimal set of obstacles which prevents a structure with homomorphism to \mathbf{C}_0 from being completed to \mathcal{K} .

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Our approach

 \mathcal{K} is locally finite subclass of \mathcal{R} if for every \mathbf{C}_0 in \mathcal{R} there exists a finite bound on minimal set of obstacles which prevents a structure with homomorphism to \mathbf{C}_0 from being completed to \mathcal{K} .

Definition

Let \mathcal{R} be a class of finite irreducible structures and \mathcal{K} a subclass of \mathcal{R} . We say that the class \mathcal{K} is locally finite subclass of \mathcal{R} if for every $\mathbf{C}_0 \in \mathcal{R}$ there is $n = n(\mathbf{C}_0)$ such that every structure **C** has strong \mathcal{K} -completion providing that it satisfies the following:

 \mathbf{O} there is a homomorphism-embedding from **C** to \mathbf{C}_0

2 every substructure of **C** with at most *n* vertices has a strong \mathcal{K} -completion.

・ロト ・ 同ト ・ ヨト ・ ヨ

Sac

Locally finite subclass, an example

Example

Consider class of metric spaces with distances $\{1, 2, 3, 4\}$. Graph with edges labelled by $\{1, 2, 3, 4\}$ can be completed to a metric space if and only if it does not contain one of:

S-metric-spaces

Theorem (H.-Nešetřil, 2016)

Let S be set of positive reals. The class \mathcal{M}_S of all metric spaces with distances restricted to S has precompact Ramsey lift iff \mathcal{M}_S is an amalgamation class.

- Consider only finite S
- Identify minimal obstacles for completion of *S*-graphs.
- Show that they are all cycles of bounded size
- Apply previous theorem.

S-metric-spaces

Theorem (H.-Nešetřil, 2016)

Let S be set of positive reals with no jump numbers. The class \mathcal{M}_S of all metric spaces with distances restricted to S has precompact Ramsey lift iff \mathcal{M}_S is an amalgamation class.

- Consider only finite S
- Identify minimal obstacles for completion of *S*-graphs.
- Show that they are all cycles of bounded size
- Apply previous theorem.

ヘロト 人間 とくほど 人 ほとう ほ

Sac

S-metric-spaces

Theorem (H.-Nešetřil, 2016)

Let *S* be set of positive reals with no jump numbers. The class \mathcal{M}_S of all metric spaces with distances restricted to *S* has precompact Ramsey lift iff \mathcal{M}_S is an amalgamation class.

- Consider only finite S
- Identify minimal obstacles for completion of *S*-graphs.
- Show that they are all cycles of bounded size
- Apply previous theorem.

Consider $S = \{1, 3\}$ and cycles:

S-metric-spaces

Definition (Delhommé, Laflamme, Pouzet, Sauer, 2007)

 $a \in S$ is jump number if $a < \max(S)$ and $2a \le \min_{b \in S} (b > a)$.

・ロット (雪) ・ (目) ・ (日)

Sac

S-metric-spaces

Definition (Delhommé, Laflamme, Pouzet, Sauer, 2007)

 $a \in S$ is jump number if $a < \max(S)$ and $2a \le \min_{b \in S} (b > a)$.

Let **A** be an *S*-metric space, *j* jump number. Then the following is an equivalence: $u \sim_j v$ whenever $d(u, v) \leq j$

S-metric-spaces

Definition (Delhommé, Laflamme, Pouzet, Sauer, 2007)

 $a \in S$ is jump number if $a < \max(S)$ and $2a \le \min_{b \in S} (b > a)$.

Let **A** be an *S*-metric space, *j* jump number. Then the following is an equivalence: $u \sim_j v$ whenever $d(u, v) \leq j$

Lemma

If \mathcal{K} is a subclass of \mathcal{R} and define more equivalences then \mathcal{R} , then \mathcal{K} is not locally finite subclass.

・ロト ・ 四ト ・ 日ト ・ 日ト

Sac

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = 釣�(♡

Extended approach

 Represent equivalences with infinitely many classes by additional vertices and functions

Extended approach

 Represent equivalences with infinitely many classes by additional vertices and functions

1

Sac

Extended approach

 Represent equivalences with infinitely many classes by additional vertices and functions

Show local finiteness in this extended language. Forbidden configurations are now finite:

Extended approach

 Represent equivalences with infinitely many classes by additional vertices and functions

Show local finiteness in this extended language. Forbidden configurations are now finite:

 We need Ramsey theorem for amalgamation classes of ordered models!

Ramsey theorem with closures

Definition

Let *L* be a language, \mathcal{R} be a Ramsey class of finite irreducible *L*-structures and \mathcal{U} be a closure description. We say that a subclass \mathcal{K} of \mathcal{R} is an $(\mathcal{R}, \mathcal{U})$ -multiamalgamation class iff:

- **①** \mathcal{K} is hereditary subclass of \mathcal{R} consiting of \mathcal{U} -closed structures.
- 2 \mathcal{K} is closed for strong amalgamation over \mathcal{U} -closed substructures

Ramsey theorem with closures

Definition

Let *L* be a language, \mathcal{R} be a Ramsey class of finite irreducible *L*-structures and \mathcal{U} be a closure description. We say that a subclass \mathcal{K} of \mathcal{R} is an $(\mathcal{R}, \mathcal{U})$ -multiamalgamation class iff:

- \mathcal{K} is hereditary subclass of \mathcal{R} consiting of \mathcal{U} -closed structures.
- 2 \mathcal{K} is closed for strong amalgamation over \mathcal{U} -closed substructures
- Solution Let $\mathbf{B} \in \mathcal{K}$ and $\mathbf{C}_0 \in \mathcal{R}$. Then there exists $n = n(\mathbf{B}, \mathbf{C}_0)$ such that if \mathcal{U} -closed *L*-structure **C** satisfies the following:
 - **1** C_0 is a completion of **C**), and,
 - **2** every substructure of **C**, $|C| \le n$ has a \mathcal{K} -completion.

Then there exists $C' \in \mathcal{K}$ that is a completion of C with respect to copies of **B**.

Ramsey theorem with closures

Theorem (H.-Nešetřil, 2016)

Every $(\mathcal{R}, \mathcal{U})$ -multiamalgamation class \mathcal{K} is Ramsey.

Again it is the only non-trivial step is to verify local finiteness!

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Ramsey theorem with closures

Theorem (H.-Nešetřil, 2016)

Every $(\mathcal{R}, \mathcal{U})$ -multiamalgamation class \mathcal{K} is Ramsey.

Again it is the only non-trivial step is to verify local finiteness!

The theorem is proved by a variation and strengthening of the Partite Constructions (Nešetřil-Rödl).

Ramsey → Structural Ramsey

Ramsey lifts for forbidden homomorphisms

Theorem (Nešetřil-Rödl Theorem for relational structures, 1977)

Let L be a relational language containing binary relation \leq and \mathcal{E} be a (possibly infinite) family of ordered irreducible L-structures.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Ramsey lifts for forbidden homomorphisms

Theorem (Nešetřil-Rödl Theorem for relational structures, 1977)

Let L be a relational language containing binary relation \leq and \mathcal{E} be a (possibly infinite) family of ordered irreducible L-structures. Then the class of all ordered structures in Forb_e(\mathcal{E}) is Ramsey.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Ramsey lifts for forbidden homomorphisms

Theorem (Nešetřil-Rödl Theorem for relational structures, 1977)

Let L be a relational language containing binary relation \leq and \mathcal{E} be a (possibly infinite) family of ordered irreducible L-structures. Then the class of all ordered structures in Forb_e(\mathcal{E}) is Ramsey.

 $Forb_{e}(\mathcal{E})$ = class of all finite structures with no embedding of $\mathbf{F} \in \mathcal{E}$.

Ramsey lifts for forbidden homomorphisms

Theorem (Nešetřil-Rödl Theorem for relational structures, 1977)

Let L be a relational language containing binary relation \leq and \mathcal{E} be a (possibly infinite) family of ordered irreducible L-structures. Then the class of all ordered structures in Forb_e(\mathcal{E}) is Ramsey.

 $Forb_{e}(\mathcal{E})$ = class of all finite structures with no embedding of $\mathbf{F} \in \mathcal{E}$.

 $\mathsf{Forb}_{\mathsf{he}}(\mathcal{E}) = \mathsf{class} \text{ of all finite structures with no}$ homomorphism-embedding image of some $\mathbf{F} \in \mathcal{E}$.

Theorem (H.-Nešetřil, 2016)

Let L be a relational language containing binary relation \leq , and \mathcal{F} be a regular family of finite connected weakly ordered L-structures.

Ramsey lifts for forbidden homomorphisms

Theorem (Nešetřil-Rödl Theorem for relational structures, 1977)

Let L be a relational language containing binary relation \leq and \mathcal{E} be a (possibly infinite) family of ordered irreducible L-structures. Then the class of all ordered structures in Forb_e(\mathcal{E}) is Ramsey.

 $Forb_{e}(\mathcal{E})$ = class of all finite structures with no embedding of $\mathbf{F} \in \mathcal{E}$.

 $\mathsf{Forb}_{\mathsf{he}}(\mathcal{E}) = \mathsf{class} \text{ of all finite structures with no}$ homomorphism-embedding image of some $\mathbf{F} \in \mathcal{E}$.

Theorem (H.-Nešetřil, 2016)

Let L be a relational language containing binary relation \leq , and \mathcal{F} be a regular family of finite connected weakly ordered L-structures. Assume that the class of all ordered structures in $\operatorname{Forb}_{he}(\mathcal{F})$ is a locally finite subclass of $\overrightarrow{Rel}(L)$.

Ramsey lifts for forbidden homomorphisms

Theorem (Nešetřil-Rödl Theorem for relational structures, 1977)

Let L be a relational language containing binary relation \leq and \mathcal{E} be a (possibly infinite) family of ordered irreducible L-structures. Then the class of all ordered structures in Forb_e(\mathcal{E}) is Ramsey.

 $Forb_{e}(\mathcal{E})$ = class of all finite structures with no embedding of $\mathbf{F} \in \mathcal{E}$.

 $\mathsf{Forb}_{\mathsf{he}}(\mathcal{E}) = \mathsf{class} \text{ of all finite structures with no}$ homomorphism-embedding image of some $\mathbf{F} \in \mathcal{E}$.

Theorem (H.-Nešetřil, 2016)

Let L be a relational language containing binary relation \leq , and \mathcal{F} be a regular family of finite connected weakly ordered L-structures. Assume that the class of all ordered structures in $\operatorname{Forb}_{he}(\mathcal{F})$ is a locally finite subclass of $\overrightarrow{\operatorname{Rel}}(L)$.

Then the class \mathcal{K} of all ordered structures in $\mathsf{Forb}_{\mathsf{he}}(\mathcal{F})$ has a precompact Ramsey lift.

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Sac

Theorem (H., Nešetřil, 2014)

The class of graphs not containing bow-tie as non-induced subgraph have Ramsey lift.

Bow-tie graph:

Sac

-

Theorem (H., Nešetřil, 2014)

The class of graphs not containing bow-tie as non-induced subgraph have Ramsey lift.

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ () ◆

Lemma

Bow-tie-free graphs have free amalgamation over closed structures.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = 釣�(♡

Closures in the class of bowtie-free graphs:

Ramsey lifts for forbidden monomorphisms

Theorem (H.-Nešetřil, 2016)

Let \mathcal{M} be a set of finite connected structures such that $Forb_m(\mathcal{M})$ has an ω -categorical universal structure **U**.

Ramsey lifts for forbidden monomorphisms

Theorem (H.-Nešetřil, 2016)

Let \mathcal{M} be a set of finite connected structures such that $Forb_m(\mathcal{M})$ has an ω -categorical universal structure **U**.

Further assume that for every $\mathbf{M} \in \mathcal{M}$ at least one of the conditions holds:

there is no homomorphism-embedding of M to U, or,

M can be constructed from irreducible structures by a series of free amalgamations over irreducible substructures.

・ロト・日本・日本・日本・日本・日本

Ramsey lifts for forbidden monomorphisms

Theorem (H.-Nešetřil, 2016)

Let \mathcal{M} be a set of finite connected structures such that $Forb_m(\mathcal{M})$ has an ω -categorical universal structure **U**.

Further assume that for every $\mathbf{M} \in \mathcal{M}$ at least one of the conditions holds:

- there is no homomorphism-embedding of M to U, or,
- M can be constructed from irreducible structures by a series of free amalgamations over irreducible substructures.

Then the class of finite algebraically closed substructures of **U** has precompact Ramsey lift.

Ramsey lifts for forbidden monomorphisms

Theorem (H.-Nešetřil, 2016)

Let \mathcal{M} be a set of finite connected structures such that $Forb_m(\mathcal{M})$ has an ω -categorical universal structure **U**.

Further assume that for every $\mathbf{M} \in \mathcal{M}$ at least one of the conditions holds:

M can be constructed from irreducible structures by a series of free amalgamations over irreducible substructures.

Then the class of finite algebraically closed substructures of **U** has precompact Ramsey lift.

Ramsey lifts for forbidden monomorphisms

Theorem (H.-Nešetřil, 2016)

Let \mathcal{M} be a set of finite connected structures such that $Forb_m(\mathcal{M})$ has an ω -categorical universal structure **U**.

Further assume that for every $\mathbf{M} \in \mathcal{M}$ at least one of the conditions holds:

there is no homomorphism-embedding of M to U, or,

M can be constructed from irreducible structures by a series of free amalgamations over irreducible substructures.

Then the class of finite algebraically closed substructures of **U** has precompact Ramsey lift.

Sac

Further applications

- Many classical Ramsey classes follows as corollaries of our results:
 - Partial orders
 - Metric spaces
 - H-colourable graphs
 - Graphs with metric embeddings
 - Steiner systems
 - graphs with no short odd cycles
 - ...
- S-metric spaces and generalizations
- Classes defining multiple orders
- Totally ordered structures
- "Fat" structures
- . . .

Thank you for the attention

- J.H., J. Nešetřil: Bowtie-free graphs have a Ramsey lift. Submitted (arXiv:1402.2700), 2014, 22 pages.
- J.H., J. Nešetřil: All those Ramsey classes (Ramsey classes with closures and forbidden homomorphisms). Submitted (arXiv:1606.07979), 2016, 59 pages.