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Ramsey Theorem

Theorem (Ramsey Theorem, 1930)

∀n,p,k≥1∃N : N −→ (n)p
k .

N −→ (n)p
k : For every partition of

({1,2,...,N}
p

)
into k classes

(colors) there exists X ⊆ {1,2, . . . ,N}, |X | = n such that
(X

p

)
belongs to single partition (it is monochromatic)

For p = 2, n = 3, k = 2 put N = 6
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Ramsey theorem for finite relational structures

Let L be a purely relational language with binary relation ≤.

Denote by
−−→
Rel(L) the class of all finite L-structures where ≤ is a

linear order.

Theorem (Nešetřil-Rödl, 1977; Abramson-Harrington, 1978)

∀A,B∈−→Rel(L)∃C∈−→Rel(L) : C −→ (B)A
2 .

(B
A

)
is the set of all substructures of B isomorphic to A.

C −→ (B)A
2 : For every 2-colouring of

(C
A

)
there exists B̃ ∈

(C
B

)
such

that
(B̃

A

)
is monochromatic.
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C
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Order is necessary
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Vertices of C can be linearly ordered and edges coloured
accordingly:

If edge is goes forward in linear order it is red
blue otherwise.



Ramsey → Structural Ramsey Ramsey classes Ramsey classes with constraints

Order is necessary

A B

Vertices of C can be linearly ordered and edges coloured
accordingly:

If edge is goes forward in linear order it is red
blue otherwise.



Ramsey → Structural Ramsey Ramsey classes Ramsey classes with constraints

Structural extensions

Ramsey theorem for finite relational structures

Structures Structures Infinite Categories
with with structures

functions axioms
(Models)



Ramsey → Structural Ramsey Ramsey classes Ramsey classes with constraints

Structural extensions

Ramsey theorem for finite relational structures

Structures

Structures Infinite Categories

with

with structures

functions

axioms

(Models)



Ramsey → Structural Ramsey Ramsey classes Ramsey classes with constraints

Structural extensions

Ramsey theorem for finite relational structures

Structures Structures

Infinite Categories

with with

structures

functions axioms
(Models)



Ramsey → Structural Ramsey Ramsey classes Ramsey classes with constraints

Structural extensions

Ramsey theorem for finite relational structures

Structures Structures Infinite

Categories

with with structures
functions axioms
(Models)



Ramsey → Structural Ramsey Ramsey classes Ramsey classes with constraints

Structural extensions

Ramsey theorem for finite relational structures

Structures Structures Infinite Categories
with with structures

functions axioms
(Models)



Ramsey → Structural Ramsey Ramsey classes Ramsey classes with constraints

Ramsey theorem for finite models

Let L be a language with both relations and functions.

Assume that L contains binary relation ≤.

Denote by
−−→
Mod(L) the class of all finite L-structures where ≤ is a

linear order.

Theorem (H.-Nešetřil, 2016)

∀A,B∈−−→Mod(L)∃C∈−−→Mod(L) : C −→ (B)A
2 .
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Ramsey classes

Definition

A class C of finite L-structures is Ramsey iff ∀A,B∈C∃C∈C : C −→ (B)A
2 .

Example (Linear orders — Ramsey Theorem, 1930)

The class of all finite linear orders is a Ramsey class.

Example (Structures — Nešetřil-Rödl, 76; Abramson-Harrington, 78)

For every relational language L,
−−→
Rel(L) is a Ramsey class.

Example (Partial orders — Nešetřil-Rödl, 84; Paoli-Trotter-Walker, 85)

The class of all finite partial orders with linear extension is Ramsey.

Example (Models — H.-Nešetřil, 2016)

For every language L,
−−→
Mod(L) is a Ramsey class.
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Ramsey classes are amalgamation classes

Definition (Amalgamation property of class K)
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Nešetřil, 80’s: Under mild assumptions Ramsey classes have
amalgamation property.
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Nešetřil’s Classification Programme, 2005

Classification Programme

Ramsey classes =⇒ amalgamation classes
⇑ ⇓

lifts of homogeneous ⇐= homogeneous structures

Kechris, Pestov, Todorčevic̀: Fraïssé Limits, Ramsey Theory, and
topological dynamics of automorphism groups (2005)

Definition

Let L′ be language containing language L. A lift (or expansion) of
L-structure A is L′-structure A′ on the same vertex set such that all
relations/functions in L ∩ L′ are identical.

Theorem (Nešetřil, 1989)

All homogeneous graphs have Ramsey lift.
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All homogeneous graphs have Ramsey lift.



Ramsey → Structural Ramsey Ramsey classes Ramsey classes with constraints
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Nešetřil’s Classification Programme, 2005

Classification Programme

Ramsey classes =⇒

amalgamation classes

⇑ ⇓
lifts of homogeneous ⇐= homogeneous structures

Example

1 The class of finite graphs G is an amalgamation class

2 Fraïssé limit of G is the Rado graph R

3 The lift R′ of R adds generic linear order

4 Age(R′) (the class of linearly ordered finite graphs) is Ramsey

Theorem (Jasiński, Laflamme, Nguyen Van Thé, Woodrow, 2014)

All homogeneous digraphs have Ramsey lift.
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Theorem (Jasiński, Laflamme, Nguyen Van Thé, Woodrow, 2014)

All homogeneous digraphs have Ramsey lift.



Ramsey → Structural Ramsey Ramsey classes Ramsey classes with constraints
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Does every amalgamation class have a Ramsey lift?

A question asked by Bodirsky, Nešetřil, Nguyen van Thé, Pinsker,
Tsankov around 2010

Yes: extend language by infinitely many unary relations; assign every
vertex to unique relation.

Definition (Nguyen van Thé)

Let K be class of L-structures and K′ be class of lifts of K.

K is precompact if for every A ∈ K there are only finitely many
lifts of A in K′.
K has lift property if for every A ∈ K there exists B ∈ K such that
every lift of B in K′ contains every lift of A in K′.

Theorem (Kechris, Pestov, Todorčevic̀ 2005, Nguyen van Thé 2012)

For every amalgamation class K there exists, up to bi-definability, at
most one Ramsey class K′ of lifts of K with lift property.
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Existence of precompact lifts

Question: Does every amalgamation class have a precompact
Ramsey lift?
No: Consider Z seen as a metric space.

Theorem (Evans, 2015)
There exists a countable, ω-categorical structure M which that
property that its age has no precompact Ramsey lift.

Theorem (Evans, Hubička, Nešetřil, 2016+)
There still exists minimal (non-precompact) Ramsey lift of M
with lift property.
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From an amalgamation class to a Ramsey class

The Nešetřil-Rödl partite construction of Ramsey object
demands more complicated (multi)amalgamations.
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〈A,B,C〉-hypergraphs

A

B

C

Definition

Given structures A, B, C the 〈A,B,C〉-hypergraph is a hypergraph
whose vertices are copies of A in C and hyper-edges are corresponds
to copies of B: M is an hyper-edge if M = B̃ for some B̃ ∈

(C
B

)

If the 〈A,B,C〉-hypegraph has chromatic number 3, then C −→ (B)A
2

Hypergraphs of large chromatic number are known to exists, but
typically they do not correspond to 〈A,B,C〉-hypergraph
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Our approach

Structure is irreducible if every pair of vertices is contained in some
tuple of some relation

We consider classes of irreducible structures and split amalgamation
into two steps:

1 free amalgamation,
2 completion.

Definition

Irreducible structure C′ is a strong completion of C if it has the same
vertex set and every irreducible substructure of C is also (induced)
substructure of C′.
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Our approach

Theorem (H.-Nešetřil, 2016)

Let R be a Ramsey class of irreducible finite structures and let K be a
hereditary locally finite subclass of R with strong amalgamation.
Then K is Ramsey.

Schematically

Ramsey =⇒ amalgamation
amalgamation + order + local finiteness =⇒ Ramsey

What is local finiteness?
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Our approach

K is locally finite subclass of R if for every C0 in R there exists a finite
bound on minimal set of obstacles which prevents a structure with
homomorphism to C0 from being completed to K.

Definition
Let R be a class of finite irreducible structures and K a subclass of R.
We say that the class K is locally finite subclass of R if for every
C0 ∈ R there is n = n(C0) such that every structure C has strong
K-completion providing that it satisfies the following:

1 there is a homomorphism-embedding from C to C0

2 every substructure of C with at most n vertices has a strong
K-completion.
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Locally finite subclass, an example

Example

Consider class of metric spaces with distances {1,2,3,4}.
Graph with edges labelled by {1,2,3,4} can be completed to a
metric space if and only if it does not contain one of:

1 1

3

1 1

4

1 2

4 4

1

1

1



Ramsey → Structural Ramsey Ramsey classes Ramsey classes with constraints

S-metric-spaces

Theorem (H.-Nešetřil, 2016)
Let S be set of positive reals. The classMS of all metric
spaces with distances restricted to S has precompact Ramsey
lift iffMS is an amalgamation class.

Consider only finite S
Identify minimal obstacles for completion of S-graphs.
Show that they are all cycles of bounded size
Apply previous theorem.

Consider S = {1,3} and cycles:

3
1 1

11

all 1s



Ramsey → Structural Ramsey Ramsey classes Ramsey classes with constraints

S-metric-spaces

Theorem (H.-Nešetřil, 2016)
Let S be set of positive reals with no jump numbers. The class
MS of all metric spaces with distances restricted to S has
precompact Ramsey lift iffMS is an amalgamation class.

Consider only finite S
Identify minimal obstacles for completion of S-graphs.
Show that they are all cycles of bounded size
Apply previous theorem.

Consider S = {1,3} and cycles:

3
1 1

11

all 1s
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S-metric-spaces

Definition (Delhommé, Laflamme, Pouzet, Sauer, 2007)

a ∈ S is jump number if a < max(S) and 2a ≤ minb∈S (b > a).

Let A be an S-metric space, j jump number. Then the following
is an equivalence: u ∼j v whenever d(u, v) ≤ j

Lemma
If K is a subclass of R and define more equivalences then R,
then K is not locally finite subclass.

3
1 1

11

all 1s

6=
=

= =

=
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Extended approach

Represent equivalences with infinitely many classes by
additional vertices and functions

Show local finiteness in this extended language. Forbidden
configurations are now finite:

= 6=6=
=

= =

=

We need Ramsey theorem for amalgamation classes of ordered
models!
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Ramsey theorem with closures

Definition

Let L be a language, R be a Ramsey class of finite irreducible
L-structures and U be a closure description. We say that a subclass
K of R is an (R,U)-multiamalgamation class iff:

1 K is hereditary subclass of R consiting of U-closed structures.

2 K is closed for strong amalgamation over U-closed substructures

3 Let B ∈ K and C0 ∈ R. Then there exists n = n(B,C0) such that
if U-closed L-structure C satisfies the following:

1 C0 is a completion of C), and,
2 every substructure of C, |C| ≤ n has a K-completion.

Then there exists C′ ∈ K that is a completion of C with respect to
copies of B.
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Ramsey theorem with closures

Theorem (H.-Nešetřil, 2016)

Every (R,U)-multiamalgamation class K is Ramsey.

Again it is the only non-trivial step is to verify local finiteness!

The theorem is proved by a variation and strengthening of the
Partite Constructions (Nešetřil-Rödl).
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Hales-Jewett
Theorem

Ramsey Theorem

Partite Lemma Nešetřil-Rödl Theorem

Partite Con-
struction

Ramsey Property of
ordered structures

(Theorem 3.6)

Partite Con-
struction for

U -substructures
(Lemma 2.6)

U -closed Partite
Construction
(Lemma 2.5)

Partite Lemma
with closures
(Lemma 2.4)

Iterated Partite
Construction
(Lemmas 2.7

and 2.8)

Ramsey property
of locally finite
strong amalga-
mation classes
(Theorem 2.1)

Ramsey property
of multiamalga-
mation classes
(Theorem 2.2)

Explicit description
of lift of Forbhe(F)

(Theorem 3.3)

Ramsey property
of lifts of classes

defined by forbidden
homomorphism-

embeddings
(Theorem 3.7)

C0 −→ (B)A2

U -closed C1 −→ (B)A2

Iterate n(C0) times

Figure 3: The structure of proofs of the main results.
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Ramsey lifts for forbidden homomorphisms

Theorem (Nešetřil-Rödl Theorem for relational structures, 1977)

Let L be a relational language containing binary relation ≤ and E be a
(possibly infinite) family of ordered irreducible L-structures.

Then the class of all ordered structures in Forbe(E) is Ramsey.

Forbe(E) = class of all finite structures with no embedding of F ∈ E .

Forbhe(E) = class of all finite structures with no
homomorphism-embedding image of some F ∈ E .

Theorem (H.-Nešetřil, 2016)

Let L be a relational language containing binary relation ≤, and F be
a regular family of finite connected weakly ordered L-structures.
Assume that the class of all ordered structures in Forbhe(F) is a
locally finite subclass of

−−→
Rel(L).

Then the class K of all ordered structures in Forbhe(F) has a
precompact Ramsey lift.
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Let L be a relational language containing binary relation ≤, and F be
a regular family of finite connected weakly ordered L-structures.
Assume that the class of all ordered structures in Forbhe(F) is a
locally finite subclass of

−−→
Rel(L).

Then the class K of all ordered structures in Forbhe(F) has a
precompact Ramsey lift.



Ramsey → Structural Ramsey Ramsey classes Ramsey classes with constraints

Ramsey lifts for forbidden homomorphisms
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Example

Theorem (H., Nešetřil, 2014)
The class of graphs not containing bow-tie as non-induced
subgraph have Ramsey lift.

Bow-tie graph:

Amalgamation of two triangles must unify vertices.

Wrong!
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Example

Structure of bow-tie-free graphs

Edges in no triangles Edges in 1 triangle Edges in > 1 triangles

Lemma
Bow-tie-free graphs have free amalgamation over closed structures.
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Example

Closures in the class of bowtie-free graphs:
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Ramsey lifts for forbidden monomorphisms

Theorem (H.-Nešetřil, 2016)

LetM be a set of finite connected structures such that Forbm(M)
has an ω-categorical universal structure U.

Further assume that for every M ∈M at least one of the conditions
holds:

1 there is no homomorphism-embedding of M to U, or,

2 M can be constructed from irreducible structures by a series of
free amalgamations over irreducible substructures.

Then the class of finite algebraically closed substructures of U has
precompact Ramsey lift.
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Further applications

Many classical Ramsey classes follows as corollaries of
our results:

Partial orders
Metric spaces
H-colourable graphs
Graphs with metric embeddings
Steiner systems
graphs with no short odd cycles
. . .

S-metric spaces and generalizations
Classes defining multiple orders
Totally ordered structures
“Fat” structures
. . .
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