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Ramsey Theorem

Theorem (Ramsey Theorem, 1930)

∀n,p,k≥1∃N : N −→ (n)p
k .

N −→ (n)p
k : For every partition of

({1,2,...,N}
p

)
into k classes (colours) there

exists X ⊆ {1, 2, . . . ,N}, |X | = n such that
(X

p

)
belongs to single partition

(it is monochromatic)

For p = 2, n = 3, k = 2 put N = 6
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Ramsey theorem for finite relational structures

Let L be a purely relational language with binary relation ≤.

Denote by
−→
Rel(L) the class of all finite L-structures where ≤ is a linear order.

Theorem (Nešetřil-Rödl, 1977; Abramson-Harrington, 1978)

∀A,B∈
−→
Rel(L)∃C∈

−→
Rel(L) : C −→ (B)A

2 .

(B
A

)
is the set of all substructures of B isomorphic to A.

C −→ (B)A
2 : For every 2-colouring of

(C
A

)
there exists B̃ ∈

(C
B

)
such that

(B̃
A

)
is

monochromatic.

A B

C
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Order is necessary

A B

Vertices of C can be linearly ordered and edges coloured accordingly:
• If edge is goes forward in linear order it is red
• blue otherwise.
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Ramsey classes

Definition

A class C of finite L-structures is Ramsey iff ∀A,B∈C∃C∈C : C −→ (B)A
2 .

Example (Linear orders — Ramsey Theorem, 1930)

The class of all finite linear orders is a Ramsey class.

Example (Structures — Nešetřil-Rödl, 76; Abramson-Harrington, 78)

For every relational language L,
−→
Rel(L) is a Ramsey class.

Example (Partial orders — Nešetřil-Rödl, 84; Paoli-Trotter-Walker, 85)

The class of all finite partial orders with linear extension is Ramsey.

Example (Models — H.-Nešetřil, 2016)

For every language L,
−−→
Mod(L) is a Ramsey class.
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Ramsey classes are amalgamation classes

Definition (Amalgamation)

A

B

B′

C

Nešetřil, 80’s: Under mild assumptions Ramsey classes have amalgamation
property.

A

A

B

C
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Nešetřil’s Classification Programme, 2005

Classification Programme
Ramsey classes =⇒ amalgamation classes

⇑ ⇓
expansions of homogeneous ⇐= homogeneous structures

⇓ ⇑ ⇓
extremely amenable groups =⇒ universal minimal flows

Kechris, Pestov, Todorčevic̀: Fraïssé Limits, Ramsey Theory, and topological
dynamics of automorphism groups (2005)

Definition

Let L′ be language containing language L. A expansion (or lift) of L-structure
A is L′-structure A′ on the same vertex set such that all relations/functions in
L ∩ L′ are identical.

Theorem (Nešetřil, 1989)

All homogeneous graphs have Ramsey expansion.
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Nešetřil’s Classification Programme, 2005

Classification Programme

Ramsey classes =⇒

amalgamation classes

⇑ ⇓
expansions of homogeneous ⇐= homogeneous structures

Example

1 The class of finite graphs G is an amalgamation class

2 Fraïssé limit of G is the Rado graph R
3 The expansion R′ of R adds generic linear order

4 Age(R′) (the class of linearly ordered finite graphs) is Ramsey
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Ramsey’s theorem: rationals

Graham Rotschild Theorem: Parametric words

Milliken tree theorem: C-relations

Gower’s Ramsey Theorem

Product arguments
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Does every amalgamation class have a Ramsey expansion?

Question (Bodirsky, Nešetřil, Nguyen van Thé, Pinsker, Tsankov 2010)

Does every amalgamation class have a Ramsey expansion?

Yes: extend language by infinitely many unary relations; assign every vertex
to unique relation.

Definition (Nguyen van Thé)

Let K be class of L-structures and K′ be class of expansions of K.
• K′ is precompact wrt K if for every A ∈ K there are only finitely many

expansions of A in K′.
• K′ has expansion property if for every A ∈ K there exists B ∈ K such

that every expansion of B in K′ contains every expansion of A in K′.

Theorem (Kechris, Pestov, Todorčevic̀ 2005, Nguyen van Thé 2012)

For every amalgamation class K there exists, up to bi-definability, at most one
Ramsey class K′ of precompact expansions of K with expansion property.
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Existence of precompact expansions

Question

Does every amalgamation class have a precompact Ramsey expansion?

No: Consider Z seen as a metric space.

Better question (Nguyen Van Thé)

Does every ω-categorical structure have a precompact Ramsey expansion?
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Existence of precompact expansions

Theorem (Evans, 2015+)

There is a countable, ω-categorical structure MF no precompact Ramsey
expansion.

In this talk we explore properties of this example.
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Three variants of David’s example

• C0: The easy example
• C1: The kindergarten example
• CF : The actual counter-example
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Hrushovski construction

• Predimension of a graph G = (V ,E) is δ(G) = 2|V | − |E |.

Example
δ(K1) = 2 δ(K2) = 4− 1 = 3 δ(K3) = 6− 3 = 3
δ(K4) = 8− 6 = 2 δ(K5) = 10− 10 = 0 δ(K6) = 12− 30 = −18.

• Finite graph G is in C0 iff ∀H⊆Gδ(H) ≥ 0.
• G ⊆ H is self-sufficient, G ≤s H, iff ∀G⊆G′⊆Hδ(G) ≤ δ(G′).

Lemma

C0 is closed for free amalgamation over self-sufficient
substructures.

Proof.

δ(C) = δ(B) + δ(B′)− δ(A).

A

B

B′

C
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Hrushovski class C0 as a reduct

• Predimension of a graph G = (V ,E) is δ(G) = 2|V | − |E |.
• Finite graph G is in C0 iff ∀H⊆Gδ(H) ≥ 0.

Lemma (By marriage theorem)

• G ∈ C0 iff it has 2-orientation (out-degrees at most 2).
• H ≤s G iff G can be 2-oriented with no edge from H to G \ H.

Corollary

C0 is a reduct of the class of all finite 2-orientations D0.

D0 is closed for free amalgamation over successor-closed substructures.
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Ramsey expansions of C0 and orientations

Theorem (Kechris, Pestov, Todorčevic̀, 2005)

Let F be a Fraïssé limit, then the following are equivalent.
• Automorphism group of F is extremely amenable;
• Age(F) has the Ramsey property.

Denote by M0 the generalised Fraïssé limit of C0.

Theorem (Evans 2015)

If M+
0 is a Ramsey expansion of M0, then Aut(M+

0 ) fixes a 2-orientation.

Proof.

• Consider G acting on the space X (M0) of 2-orientations of M0 (a G-flow).
• As Aut(M+

0 ) is extremely amenable, there is some S ∈ X (M0) which is
fixed by Aut(M+

0 ).
• Aut(M+

0 ) is a subgroup of Aut(S).
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No precompact Ramsey expansions of C0

Theorem (Evans 2016)

There is no precompact Ramsey expansion of (C0;≤s).

• Let (C+0 ,v) be a Ramsey expansion of
(C0,≤s), then every A ∈ C0 has infinitely
many expansions in (C+0 ;v).

• Given two 2-orientations A ⊆ B, we write
A vs B if there is no edge from A to
B \ A.

• v is coarser than vs for 2-orientation
fixed by (C+0 ,v).

Proof.

• Every vertex v ∈ M+
0 has out-degree at most 2, but infinite in-degree.

• Oriented path v1 → v2 → v2 . . . vn always extendeds by a vertex v0 to
v0 → v1 → v2 → v2 . . . vn.
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D≺0 is Ramsey

Denote by D≺0 the class of all finite ordered 2-orientations.

Theorem (H., Evans, Nešetřil, 2015+)

D≺0 is a Ramsey class.

Proof.

• Given A,B ∈ D≺0 put N −→ (|B|)|A|2 .
• Extend language by unary predicates R1,R2, . . .RN .

• Given |B| tuple ~b = (b1, b2, . . . b|B|), denote by B~b expansion of B where
i-th vertex is in relation Rbi .

• P0 is a disjoint union of B~v , v ∈
( n
|B|

)
.

• Put u ∼ v if successor-closure of u is isomorphic to v .
• C = P0/ ∼. C −→ (B)A

2 .
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D≺0 is Ramsey

A
B
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Optimality of Ramsey expansion

Question: (Tsankov)

Is (D≺0 ;vs) any better than the trivial Ramsey expansion?

Theorem (H., Evans, Nešetřil, 2016+)

There exists G0 ⊂ D≺0 such that
• (G0;vs) is strong expansion of (C0;≤s),
• (G0;vs) is Ramsey classes,
• NG0 , the group of automorphisms of Fraïssé limit of (G0;vs) is maximal

amongst extremely amenable subgroups of Aut(M0).
• Class of all self-sufficient substructures of G0 has an Expansion Property

with respect to C0 and thus give a minimal Aut(M0) flow.
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Expasion property of non-precompactness

Definition

K′ has expansion property wrt K if for every A ∈ K there exists B ∈ K such
that every expansion of B in K′ contains every expansion of A in K′.

Denote by (D1;vs) the class of all finite acyclic orientations.
Denote by (C1;vs) unoriented reduct of (D1;vs).

Theorem

For every A+ ∈ D1 there exists B ∈ C1 such that every expansion B+ ∈ D1

contains A+ as a self-sufficient substructure.

Proof by induction on |A+|.
v • Every A ∈ D1 has vertex v of in-degree 0.

• A0 = A \ {v}.
• Construct B0 by induction hypothesis.
• Extend every copy of A0 in B0 to A by 5 copies of v .
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Extension property of non-precompact expansion

Definition

Suppose A ∈ D1 we put A ∈ E1 iff:

1 If l(a) ≺ l(b).

2 If l(a) = l(b) then order is defined
lexicographically by descending chains of their
successors

l(a) denote the level of vertex a.

Theorem (H., Evans, Nešetřil, 2016+)

For every A+ ∈ E1 there exists B ∈ C1 such that every expansion B+ ∈ E1

contains A as self-sufficient substructure.
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Theorem (H., Evans, Nešetřil, 2016+)

For every A+ ∈ E1 there exists B ∈ C1 such that every expansion B+ ∈ E1

contains A as self-sufficient substructure.

Proof.
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For every A+ ∈ E1 there exists B ∈ C1 such that every expansion B+ ∈ E1

contains A as self-sufficient substructure.

Proof.



Structural Ramsey Hrushovski construction Orientations Ramsey property Expansion property EPPA CF

Theorem (H., Evans, Nešetřil, 2016+)
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Hrushovski construction has no Hrushovski property

Given strong class (C;≤), a strong partial automorphism of A ∈ C is an
isomorphism f : D→ E for some D,E ≤ A.

Definition

(C,≤) has the extension property for strong partial automorphisms (EPPA) if
∀A∈C∃B∈C ,A ≤ B such that every strong partial automorphism of A extends
to an automorphism of B.

Theorem (Evans, 2016, easier argument by Tsankov)

Aut(M0) is not amenable and thus (C0;≤s) has no EPPA.

Explicit example given by Zaniar Ghadernezhad.

Theorem (H., Evans, Nešetřil, 2017+)

The class of all finite 2-orientations has EPPA.
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Hrushovski construction has Hrushovski expansion

Theorem (H., Evans, Nešetřil, 2017+)

Let D be a class of finite 2-orientations closed for free amalgamation over
successor-closed substructures. Then D has EPPA.

Proof.

• Given A ∈ D construct B0 ∈ D as follows:
1 Vertices of B0 are pairs (v , f ) where v ∈ A and f ∈ Sym(B).
2 (v , f )→ (v ′, f ′) iff f = f ′ and f (v)→ f (v ′) is edge of A.

• Put (v , f ) ∼ (v , f ′) iff there is isomorphism of successor-closures α of
(v , f ) and (v , f ′) such that α(u, h) = (h, h′).

• B = B0/ ∼.

Along with Herwig-Lascar theorem this also shows EPPA for unary
Cherlin-Shelah-Shi classes and more.
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Summary

1 (C1;≤s) (reducts of acyclic 2-orientations)
¬Ramsey, ¬EPPA, AP

2 (D1;vs) (acyclic 2-orientations)
EP wrt C1, ¬Ramsey, EPPA, Minimal flow, AP

3 (D≺1 ;vs) (ordered acyclic 2-orientations)
¬EP wrt C1 nor D1, Ramsey, ¬EPPA, ¬Minimal flow, AP

4 (E1;vs) (admisively ordered acyclic 2-orientations)
EP wrt C1 and D1 Ramsey, ¬EPPA, ¬Minimal flow, AP

5 (E ′1;≤s) (All self sufficient substructures of E1)
EP wrt C1 and D1 ¬Ramsey, ¬EPPA, Minimal flow, ¬AP
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The ω-categorical case

• F : R≥0 → R≥0

• C0 = {B : δ(A) ≥ 0 for all A ⊆ B}.
CF = {B : δ(A) ≥ F (|A|) for all A ⊆ B}.

• A ≤s B iff δ(A) ≤ δ(B′) for all finite B′ with A ⊂ B′ ⊆ B.
A ≤d B iff δ(A) < δ(B′) for all finite B′ with A ⊂ B′ ⊆ B.

Lemma

Put F (x) = ln(x). Then (CF ;≤d ) is a free amalgamation class.

Proof.

A
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B′

C
A

δ(G)

|G|

B
B′

C
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Successor-d-closure

rootsA(B) is set of all roots of A reachable from B ⊆ A

Lemma (H., Evans, Nešetřil, 2015+)

Let B ⊆ A be an 2-orientations. Then B is both d-closed and
successor-closed in A iff

B = {v : rootsA(v) ⊆ rootsA(B)}.

Recall: B is d-closed in A iff δ(B) < δ(B′) for all B′ s.t. B ⊂ B′ ⊆ A.

Proof.

• Given B vs A, δ(B) is the number of
roots of out-degree 1 + twice number of
roots of out-degree 0.

• Extending B by all vertices v such that
rootsA(v) ⊆ rootsA(B) keeps δ.

• Extending B by any other vertex
increases δ.



Structural Ramsey Hrushovski construction Orientations Ramsey property Expansion property EPPA CF

Successor-d-closure

rootsA(B) is set of all roots of A reachable from B ⊆ A

Lemma (H., Evans, Nešetřil, 2015+)
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CF is harder

• (CF ;≤d) contains subclass interpreting undirected graphs
• successor-d-closure is not unary: it is not true that successor-d-closure

of a set is union of successor-d-closures of its vertices.

CF is harder but partly solved by big hammers (for specific choices of F )
• Ramsey property of (D≺F ;vd ) as locally finite subclass.
• Expansion property is a combination of expansion property for (C0;≤s)

and ordering property for graphs (via Ramsey property).

EPPA and big Ramsey degree currently open (WIP).
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Ramsey’s theorem: rationals

Equivalences

Graham Rotschild Theorem: Parametric words Boolean algebras

−→
Rel(L)

Acyclic graphsPartial orders

Semilattices

Dual structural Ramsey theorem

Metric spaces

S-metric spaces

Metrically homogeneous graphs

Models (Structures with functions)

Unary functions

Cherlin Shelah Shi classes

Milliken tree theorem: C-relations

Free amalgamation classes

Partial Steiner systems

Structures with unary functions

Gower’s Ramsey Theorem

Lelek fans

Boolean algebras with ideals

Permutations

Line graphs

Product arguments Interpretations Adding unary functions Partite construction

Locally finite subclass

Cyclic orders

Interval graphs
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Summary

1 (CF ;≤d) (reducts of 2-orientations)
¬Ramsey, ¬EPPA, ω-categorical, AP

2 (DF ;vd) (2-orientations)
¬EP wrt CF , ¬Ramsey, EPPA?, ¬Minimal flow, AP, ¬ω-categorical,

3 (D≺F ;vd) (ordered 2-orientations)
¬EP wrt CF nor DF , Ramsey, ¬EPPA, ¬Minimal flow, AP,
¬ω-categorical,

4 (EF ;vd) (admissive orderings and 2-orientations)
EP wrt CF but no DF , Ramsey, ¬EPPA, ¬Minimal flow, AP,
¬ω-categorical,

5 (E ′F ;≤d) (All d-closed substructures of EF )
EP wrt CF but no DF , ¬Ramsey, ¬EPPA, Minimal flow, ¬AP,
¬ω-categorical,

6 (D′F ;≤d) (reducts E ′F )
EP wrt CF but no DF , ¬Ramsey, ¬EPPA, Minimal flow, ¬AP,
¬ω-categorical,



Structural Ramsey Hrushovski construction Orientations Ramsey property Expansion property EPPA CF

Summary

1 (CF ;≤d) (reducts of 2-orientations)
¬Ramsey, ¬EPPA, ω-categorical, AP

2 (DF ;vd) (2-orientations)
¬EP wrt CF , ¬Ramsey, EPPA?, ¬Minimal flow, AP, ¬ω-categorical,

3 (D≺F ;vd) (ordered 2-orientations)
¬EP wrt CF nor DF , Ramsey, ¬EPPA, ¬Minimal flow, AP,
¬ω-categorical,

4 (EF ;vd) (admissive orderings and 2-orientations)
EP wrt CF but no DF , Ramsey, ¬EPPA, ¬Minimal flow, AP,
¬ω-categorical,

5 (E ′F ;≤d) (All d-closed substructures of EF )
EP wrt CF but no DF , ¬Ramsey, ¬EPPA, Minimal flow, ¬AP,
¬ω-categorical,

6 (D′F ;≤d) (reducts E ′F )
EP wrt CF but no DF , ¬Ramsey, ¬EPPA, Minimal flow, ¬AP,
¬ω-categorical,



Structural Ramsey Hrushovski construction Orientations Ramsey property Expansion property EPPA CF

Thank you for the attention

• J.H., J. Nešetřil: All those Ramsey classes
(Ramsey classes with closures and forbidden homomorphisms).
Submitted (arXiv:1606.07979), 2016, 60 pages.

• D. Evans, J.H., J. Nešetřil: Automorphism groups and Ramsey
properties of sparse graphs. To appear soon, 53+ pages.
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