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Tutorial overview

I would like to cover some old&new results in the area of big Ramsey degrees:
1 Big Ramsey degrees of rationals and Rado graph.
2 Recent progress in the area

1 Big Ramsey degrees of Triangle-free graphs
2 New Ramsey theorem for trees with successor operation.

3 Applications of the new Ramsey theorem
1 Easy proof of unrestricted Nešetřil–Rödl or Abramson–Harington theorem
2 Big Ramsey degrees of structures forbidding bigger substructures.



Ramsey theorem

Theorem (Infinite Ramsey Theorem, 1930)

∀p,k≥1 : ω −→ (ω)p
k,1.

In 1970’s a concept of structural Ramsey theory was introduced. A Ramsey theorem can
be seen as a theorem about the class of linear orders.

Theorem (Infinite Ramsey Theorem, 1930)

Let O be the class of all finite linear orders.

∀(O,≤O)∈O,k≥1 : (ω,≤) −→ (ω,≤)
(O,≤O)
k,1 .

A natural question: Is the same true for (Q,≤) (the order of rationals)?

∀(O,≤O)∈O,k≥1 : (Q,≤) −→ (Q,≤)
(O,≤O)
k,1 .

Sierpiński: not true for |O| = 2.
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Definition (Erdős–Rado partition arrow)

N −→ (n)p
k,t means:
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p
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Rich colouring of Q

Colour of k -tuple = shape of meet closure in the tree
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Big Ramsey Degrees of (Q,≤)

In late 1960’s Laver developed method of finding copies of Q in Q with bounded number of
colours using Milliken’s tree theorem.

Theorem (Devlin, 1979)

∀(O,≤O)∈O∃T=T (|O|)∈ω∀k≥1 : (Q,≤) −→ (Q,≤)
(O,≤O)
k,T .

T (n) is the big Ramsey degree of n tuple in Q.

T (n) = tan(2n−1)(0).

tan(2n−1)(0) is the (2n − 1)st derivative of the tangent evaluated at 0.

T (1) = 1,T (2) = 2,T (3) = 16,T (4) = 272,

T (5) = 7936,T (6) = 353792,T (7) = 22368256
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Trees (terminology)

0 1

00 01 10 11

000 001 010 011 100 101 110 111

(2<7,⊑)

• A tree is a (possibly empty) partially ordered set (T , <T )
such that, for every t ∈ T , the set { s ∈ T : s <T t } is finite
and linearly ordered by <T . All trees considered are finite
or countable.

• Tree is rooted, that is, they have a unique minimal element
called the root of the tree.

• An element t ∈ T of a tree T is called a node of T and its
level, denoted by ℓT (t), is the size of the set
{ s ∈ T : s <T t }.

• We use T (n) to denote the set of all nodes of T at level n.
Similarly T (<n) denotes an initial segment of the tree
consisting of all nodes of level less than n.

• For s, t ∈ T , the meet s ∧T t of s and t is the largest s′ ∈ T
such that s′ ≤T s and s′ ≤T t .

• The height of T , denoted by h(T ), is the minimal natural
number h such that T (h) = ∅. If there is no such number
h, then we say that the height of T is ω.
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Subtrees and strong subtrees
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• A subtree of a tree T is a subset S ⊆ T viewed as a tree
equipped with the induced partial ordering.

• Given a tree T and nodes s, t ∈ T we say that s is a
successor of t in T if t ≤T s.

• The node s is an immediate successor of t in T if t <T s
and there is no s′ ∈ T such that t <T s′ <T s.

• Node with no successors is leaf.



Strong subtree
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Definition

Let T be rooted tree. Nonempty S ⊆ T is a strong subtree of T of height n ∈ ω + 1 if:

1 S is closed for meets. (In particular, S is rooted.)

2 For every a ∈ S(<(n − 1)) and every immediate successor b of a in T there is an unique
immediate successor c of a in S such that a ⊑ b ⊑ c. (If n = ω then every a ∈ S.)

3 S is level preserving: Every level of S is a subset of some level of T .

4 S has height n.
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Ramsey-type theorem for strong subtrees

Let T be a tree and k ∈ ω+ 1. We use Strk (T ) to denote the set of all strong subtrees of T
of height k .

Theorem (Milliken 1979)

For every rooted finitely branching tree T with no leaves, every k ∈ ω and every finite
colouring of Strk (T ) there is S ∈ Strω(T ) such that the set Strk (S) is monochromatic.

The difficult case to prove is k = 1 (Halpern–Läuchli Theorem, 1966)

0 1

00 01 10 11

000 001 010 011 100 101 110 111

Notice that for regularly branching tree the strong subtree is isomorphic to the original tree.
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Big Ramsey degrees using Milliken tree theorem

We aim to prove:

Theorem (Laver, late 1969)

∀(O,≤O)∈O∃T=T (|O|)∈ω∀k≥1 : (Q,≤) −→ (Q,≤)
(O,≤O)
k,T .

Easy case |O| = 1:
1 Nodes of the binary tree 2<ω ordered

“from left to right” yields (Q,≤).

2 Finite colouring (Q,≤) gives a finite colouring of
the nodes of the infinite binary tree.

3 Using the Halpern–Läuchli’s theorem we can find
a strong subtree which is monochromatic.

4 Strong subtree is isomorphic to the original
binary tree and also isomorphic to (Q,≤) when
ordered lexicographically
=⇒ we found the monochromatic copy!

0 1

00 01 10 11

000 001 010 011 100 101 110 111

If |O| = n > 1 we transfer colourings of n-tuples of nodes to colouring of strong subtrees.
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Envelopes of subsets
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• Given a subset X of tree T , an envelope is any strong subtree S of T containing X .
• Envelope is minimal if h(S) is minimized.

• Envelope can be constructed by first doing the meet-closure of X (adding at most
|X | − 1 extra levels) and then adding extra nodes as necessary to get strong subtree
(without adding new levels).

Observation

A minimal envelope of every finite X has height at most 2|X | − 1.

Multiple choices of X may lead to a same envelope. We speak of different embedding
types within a given envelope.
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Big Ramsey degrees using Milliken tree theorem

Now we can finish proof of:

Theorem (Laver, late 1969)

∀(O,≤O)∈O∃T=T (|O|)∈ω∀k≥1 : (Q,≤) −→ (Q,≤)
(O,≤O)
k,T .

Proof.

1 Fix (O,≤O) ∈ O and put n = |O|.
2 T (n) is the number of embedding types of n-tuples in the binary tree.

• Recall that height of each envelope is at most 2n − 1.
• Every embedding type is thus an suset of 2<2n.

3 Fix a finite colouring of n-tuples
4 For each embedding type construct colouring of envelopes and pass to a

monochromatic subtree by the application of Milliken tree theorem.
5 The resulting copy will have at most T (n) different colours
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Big Ramsey degrees of (Q,≤) are finite!



Devlin types

Definition (Devlin types)
A ⊆ 2<ω is a Devlin embedding type iff it is an antichain and for
every 0 ≤ ℓ < maxa∈A |a| precisely one of the following happens:

1 Leaf: There exists precisely one a ∈ A with |a| = ℓ.
Moreover for every b ∈ A, |b| > ℓ it holds that b(ℓ) = 0.

2 Branching: There exists a,b ∈ A, |a|, |b| > ℓ such that
a(ℓ) = 0, b(ℓ) = 1 and moreover for every c ∈ A, |c| ≥ ℓ
whose iniital segment of length ℓ is different form b it holds
that |c| > ℓ and c(ℓ) = 0.

00

110

1000

Fun fact: Number of Devlin types of size n is

tn =
n−1∑
ℓ=1

(
2n − 2
2ℓ− 1

)
tℓ · tn−ℓ with n1 = 1

This is well known sequence (of the odd tangent numbers).
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The characterisation of the big Ramsey degrees

Theorem (Devlin, 1979)

∀(O,≤O)∈O∃T=T (|O|)∈ω∀k≥1 : (Q,≤) −→ (Q,≤)
(O,≤O)
k,T .

Where minimal T satisfying the statement above is the number of Devlin types of size |O|

Lemma

There exists Devlin type representing (Q,≤) (with “left to right” order of the binary tree).

Proof.

Enumerate (Q,≤) and build the Delvin type (carefully) via induction.

Lemma

If B ⊂ A is a subset of Devlin type A, then the embedding type of B inside every minimal
envelope is a Devlin type.

Proof.

Recall that in Devlin type on every is either leaf or branching. Minimal envelope will
include all those levels where branching or leaf of B happens and skip all others.

We thus obtain an upper bound: T (|O|) is at most the number of Devlin types.
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Lemma

If B ⊂ A is a subset of Devlin type A, then the embedding type of B inside every minimal
envelope is a Devlin type.

Proof.

Recall that in Devlin type on every is either leaf or branching. Minimal envelope will
include all those levels where branching or leaf of B happens and skip all others.

We thus obtain an upper bound: T (|O|) is at most the number of Devlin types.



The lower bound

Lemma

Let A be a Devlin type representing (Q,≤) and B ⊆ A a copy of (Q,≤) then there exists a
C ⊆ B whose embedding type (inside a minimal envelope) is A.

Proof by a slide-show.

Proceed by induction on the individual branching/leaf events of A.
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Lemma

Let A be a Devlin type representing (Q,≤) and B ⊆ A a copy of (Q,≤) then there exists a
C ⊆ B whose embedding type (inside a minimal envelope) is A.

Proof by a slide-show.

Proceed by induction on the individual branching/leaf events of A.
First produce meet of B. A starts with a branching. Place the root of A to this meet.
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The lower bound

Lemma

Let A be a Devlin type representing (Q,≤) and B ⊆ A a copy of (Q,≤) then there exists a
C ⊆ B whose embedding type (inside a minimal envelope) is A.

Proof by a slide-show.

Proceed by induction on the individual branching/leaf events of A.
The meet splits leafs of B into two infinite intervals. Each with meet above its son.

A

A

B



The lower bound

Lemma

Let A be a Devlin type representing (Q,≤) and B ⊆ A a copy of (Q,≤) then there exists a
C ⊆ B whose embedding type (inside a minimal envelope) is A.

Proof by a slide-show.

Proceed by induction on the individual branching/leaf events of A.
Use corresponding meet to realize 2nd branching of A.
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The lower bound

Lemma

Let A be a Devlin type representing (Q,≤) and B ⊆ A a copy of (Q,≤) then there exists a
C ⊆ B whose embedding type (inside a minimal envelope) is A.

Proof by a slide-show.

Proceed by induction on the individual branching/leaf events of A.
B further subdivides into intervals.
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The lower bound

Lemma

Let A be a Devlin type representing (Q,≤) and B ⊆ A a copy of (Q,≤) then there exists a
C ⊆ B whose embedding type (inside a minimal envelope) is A.

Proof by a slide-show.

Proceed by induction on the individual branching/leaf events of A.
Continue analogously with next branching.
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The lower bound

Lemma

Let A be a Devlin type representing (Q,≤) and B ⊆ A a copy of (Q,≤) then there exists a
C ⊆ B whose embedding type (inside a minimal envelope) is A.

Proof by a slide-show.

Proceed by induction on the individual branching/leaf events of A.
Place the first leaf of A into corresponding interval.
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The lower bound

Lemma

Let A be a Devlin type representing (Q,≤) and B ⊆ A a copy of (Q,≤) then there exists a
C ⊆ B whose embedding type (inside a minimal envelope) is A.

Proof by a slide-show.

Proceed by induction on the individual branching/leaf events of A.
. . . blablabla. . . proof done.



Victory!

We characterised the big Ramsey degrees of rationals and gave a closed-form formula.
This shows that the upper bound proof is best possible. It also has applications to
topological dynamics

Kechris–Pestov–Todorčević: Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups
Zucker: Big Ramsey degrees and topological dynamics



Big Ramsey degrees of R

Definition

A (countable) structure A is (ultra) homogeneous if every its partial isomorphism extends
to an automorphism.

• We denote by R the Rado (or random) graph. This is the unique homogeneous and
universal countable graph. (By universal we mean that every countable graph has an
embedding to R.)

• We denote by G the class of all finite graphs.

Theorem

∀A∈G∃T=T ′(A)∈ω∀k≥1 : R −→ (R)A
k,T .

A finitary version is (probably more) famous!

Theorem (Nešetřil–Rödl 1977, Abramson–Harington 1978)

∀A∈G∃t=t(A)∈ω∀B∈G,k≥1∃C ∈ G : C −→ (B)A
k,t .
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• We denote by R the Rado (or random) graph. This is the unique homogeneous and
universal countable graph. (By universal we mean that every countable graph has an
embedding to R.)

• We denote by G the class of all finite graphs.

Theorem

∀A∈G∃T=T ′(A)∈ω∀k≥1 : R −→ (R)A
k,T .

This theorem was published by Sauer in 2006 and also appears in Todorčević’ Introduction
to Ramsey spaces. Values of T ′(G) were characterised by Laflamme–Sauer–Vuksanović
in 2010.
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Understanding the unavoidable colourings

While trying to formulate Ramsey-type theorem it is good to check if there are any
unavoidable colourings and if so understand their structure.
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x5

For (Q,≤) we have the Sierpiński colourings. Can we do something similar for the Rado
graph?
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Passing number graph
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Definition (Graph G)

We will consider graph G:
1 Vertices: 2<ω

2 Vertices a,b ∈ 2<ω satisfying |a| < |b| forms and edge if and only if b(|a|) = 1.
3 There are no other edges.
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The upper bound

Lemma

G is universal: the Rado graph R embeds to G.

Proof.

Assume that the vertex set of R is ω. The vertex i ∈ ω then corresponds to a sequence a
of length i with a(j) = 1 if and only if i ∼ j .

Lemma

The definition of G is stable for passing into a strong subtrees: if S is a strong subtree of
2<ω then it is also a copy of G in G

We thus can repeat precisely the same proof as before to obtain the upper bound on big
Ramsey degrees.

Theorem

∀A∈G∃T=T ′(A)∈ω∀k≥1 : R −→ (R)A
k,T .

Lower bounds needs a bit more care.



The upper bound

Lemma

G is universal: the Rado graph R embeds to G.

Proof.

Assume that the vertex set of R is ω. The vertex i ∈ ω then corresponds to a sequence a
of length i with a(j) = 1 if and only if i ∼ j .

Lemma

The definition of G is stable for passing into a strong subtrees: if S is a strong subtree of
2<ω then it is also a copy of G in G

We thus can repeat precisely the same proof as before to obtain the upper bound on big
Ramsey degrees.

Theorem

∀A∈G∃T=T ′(A)∈ω∀k≥1 : R −→ (R)A
k,T .

Lower bounds needs a bit more care.



The upper bound

Lemma

G is universal: the Rado graph R embeds to G.

Proof.

Assume that the vertex set of R is ω. The vertex i ∈ ω then corresponds to a sequence a
of length i with a(j) = 1 if and only if i ∼ j .

Lemma

The definition of G is stable for passing into a strong subtrees: if S is a strong subtree of
2<ω then it is also a copy of G in G

We thus can repeat precisely the same proof as before to obtain the upper bound on big
Ramsey degrees.

Theorem

∀A∈G∃T=T ′(A)∈ω∀k≥1 : R −→ (R)A
k,T .

Lower bounds needs a bit more care.



Thank you for the attention

Most we covered today is in S. Todorčević, Introduction to Ramsey spaces
• Halpern, Läuchli: A partition theorem, Transactions of the American Mathematical Society 124

(2) (1966), 260–367.
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• F. Galvin: Errata to “Partition theorems for the real line”, Notices Amer. Math. Soc. 16 (1969).
• K. Milliken: A Ramsey theorem for trees, Journal of Combinatorial Theory, Series A 26 (3)

(1979), 215–237.
• P. Erdős, A. Hajnal: Unsolved and solved problems in set theory, Proceedings of the Tarski

Symposium (Berkeley, Calif., 1971). (Laver’s proof is first mentioned here)
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Mathematical Society 83 (1) (1977), 127–128.
• F. Abramson, L. Harrington: Models without indiscernibles, Journal of Symbolic Logic 43 (1978)

572–600.
• D. Devlin: Some partition theorems and ultrafilters on ω, PhD thesis, Dartmouth College, 1979.
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