Introduction to big Ramsey degrees

Part 1: Big Ramsey degrees of rationals and Rado graph

Jan Hubička

Department of Applied Mathematics
Charles University
Prague

Perspectives on Set Theory, 2023, Warsaw

Tutorial overview

I would like to cover some old\&new results in the area of big Ramsey degrees:
(1) Big Ramsey degrees of rationals and Rado graph.
(2) Recent progress in the area
(1) Big Ramsey degrees of Triangle-free graphs
(2) New Ramsey theorem for trees with successor operation.
(3) Applications of the new Ramsey theorem
(1) Easy proof of unrestricted Nešetril-Rödl or Abramson-Harington theorem
(2) Big Ramsey degrees of structures forbidding bigger substructures.

Ramsey theorem

Theorem (Infinite Ramsey Theorem, 1930)

$$
\forall_{p, k \geq 1}: \omega \longrightarrow(\omega)_{k, 1}^{p} .
$$

Ramsey theorem

Theorem (Infinite Ramsey Theorem, 1930)

$$
\forall_{p, k \geq 1}: \omega \longrightarrow(\omega)_{k, 1}^{p}
$$

Definition (Erdős-Rado partition arrow)

$N \longrightarrow(n)_{k, t}^{p}$ means:
For every partition of $\binom{N}{p}$ into k classes (colours) there exists $X \in\binom{N}{n}$ such that $\binom{X}{p}$ belongs to at most t parts.
($t=1$ means that $\binom{X}{p}$ is monochromatic.)

Ramsey theorem

Theorem (Infinite Ramsey Theorem, 1930)

$$
\forall_{p, k \geq 1}: \omega \longrightarrow(\omega)_{k, 1}^{p}
$$

In 1970's a concept of structural Ramsey theory was introduced. A Ramsey theorem can be seen as a theorem about the class of linear orders.

Theorem (Infinite Ramsey Theorem, 1930)

Let \mathcal{O} be the class of all finite linear orders.

$$
\forall(0, \leq 0) \in \mathcal{O}, k \geq 1:(\omega, \leq) \longrightarrow(\omega, \leq)_{k, 1}^{(0, \leq 0)}
$$

Ramsey theorem

Theorem (Infinite Ramsey Theorem, 1930)

$$
\forall_{p, k \geq 1}: \omega \longrightarrow(\omega)_{k, 1}^{p}
$$

In 1970's a concept of structural Ramsey theory was introduced. A Ramsey theorem can be seen as a theorem about the class of linear orders.

Theorem (Infinite Ramsey Theorem, 1930)

Let \mathcal{O} be the class of all finite linear orders.

$$
\forall(0, \leq 0) \in \mathcal{O}, k \geq 1:(\omega, \leq) \longrightarrow(\omega, \leq)_{k, 1}^{(0, \leq 0)}
$$

$\binom{\mathbf{B}}{\mathbf{A}}$ is the set of all embeddings of structure \mathbf{A} to structure \mathbf{B}.

Definition (Leeb's generalization of the Erdős-Rado partition arrow)

$\mathbf{C} \longrightarrow(\mathbf{B})_{k, t}^{\mathbf{A}}$ means:
For every k-colouring of $\binom{\mathbf{C}}{\mathbf{A}}$ there exists $f \in\binom{\mathbf{C}}{\mathbf{B}}$ such that $\binom{f(\mathbf{B})}{\mathbf{A}}$ has at most t colours.

Ramsey theorem

Theorem (Infinite Ramsey Theorem, 1930)

$$
\forall_{p, k \geq 1}: \omega \longrightarrow(\omega)_{k, 1}^{p}
$$

In 1970's a concept of structural Ramsey theory was introduced. A Ramsey theorem can be seen as a theorem about the class of linear orders.

Theorem (Infinite Ramsey Theorem, 1930)

Let \mathcal{O} be the class of all finite linear orders.

$$
\forall(0, \leq 0) \in \mathcal{O}, k \geq 1:(\omega, \leq) \longrightarrow(\omega, \leq)_{k, 1}^{(0, \leq 0)}
$$

A natural question: Is the same true for (\mathbb{Q}, \leq) (the order of rationals)?

$$
\forall(0, \leq o) \in \mathcal{O}, k \geq 1:(\mathbb{Q}, \leq) \longrightarrow(\mathbb{Q}, \leq)_{k, 1}^{(0, \leq o)}
$$

Ramsey theorem

Theorem (Infinite Ramsey Theorem, 1930)

$$
\forall_{p, k \geq 1}: \omega \longrightarrow(\omega)_{k, 1}^{p}
$$

In 1970's a concept of structural Ramsey theory was introduced. A Ramsey theorem can be seen as a theorem about the class of linear orders.

Theorem (Infinite Ramsey Theorem, 1930)

Let \mathcal{O} be the class of all finite linear orders.

$$
\forall(0, \leq 0) \in \mathcal{O}, k \geq 1:(\omega, \leq) \longrightarrow(\omega, \leq)_{k, 1}^{(0, \leq 0)}
$$

A natural question: Is the same true for (\mathbb{Q}, \leq) (the order of rationals)?

$$
\forall(0, \leq o) \in \mathcal{O}, k \geq 1:(\mathbb{Q}, \leq) \longrightarrow(\mathbb{Q}, \leq)_{k, 1}^{(0, \leq o)}
$$

Sierpiński: not true for $|O|=2$.

Rich colouring of \mathbb{Q}

Rich colouring of \mathbb{Q}

Rich colouring of \mathbb{Q}

x_{0}

Rich colouring of \mathbb{Q}

Rich colouring of \mathbb{Q}

Colour of k-tuple $=$ shape of meet closure in the tree

Rich colouring of \mathbb{Q}

Colour of k-tuple $=$ shape of meet closure in the tree

Rich colouring of \mathbb{Q}

Colour of k-tuple $=$ shape of meet closure in the tree

Rich colouring of \mathbb{Q}

Colour of k-tuple $=$ shape of meet closure in the tree

Big Ramsey Degrees of (\mathbb{Q}, \leq)

In late 1960's Laver developed method of finding copies of \mathbb{Q} in \mathbb{Q} with bounded number of colours using Milliken's tree theorem.

Theorem (Devlin, 1979)

$$
\forall(0, \leq 0) \in \mathcal{O} \exists_{T=T(|O|) \in \omega} \forall_{k \geq 1}:(\mathbb{Q}, \leq) \longrightarrow(\mathbb{Q}, \leq)_{k, T}^{(O, \leq 0)} .
$$

$T(n)$ is the big Ramsey degree of n tuple in \mathbb{Q}.

Big Ramsey Degrees of (\mathbb{Q}, \leq)

In late 1960's Laver developed method of finding copies of \mathbb{Q} in \mathbb{Q} with bounded number of colours using Milliken's tree theorem.

Theorem (Devlin, 1979)

$$
\forall(0, \leq 0) \in \mathcal{O} \exists_{T=T(|O|) \in \omega} \forall_{k \geq 1}:(\mathbb{Q}, \leq) \longrightarrow(\mathbb{Q}, \leq)_{k, T}^{(0, \leq 0)}
$$

$T(n)$ is the big Ramsey degree of n tuple in \mathbb{Q}.

$$
T(n)=\tan ^{(2 n-1)}(0)
$$

$\tan ^{(2 n-1)}(0)$ is the $(2 n-1)^{\text {st }}$ derivative of the tangent evaluated at 0 .

Big Ramsey Degrees of (\mathbb{Q}, \leq)

In late 1960's Laver developed method of finding copies of \mathbb{Q} in \mathbb{Q} with bounded number of colours using Milliken's tree theorem.

Theorem (Devlin, 1979)

$$
\forall(0, \leq 0) \in \mathcal{O} \exists_{T=T(|O|) \in \omega} \forall_{k \geq 1}:(\mathbb{Q}, \leq) \longrightarrow(\mathbb{Q}, \leq)_{k, T}^{(0, \leq 0)}
$$

$T(n)$ is the big Ramsey degree of n tuple in \mathbb{Q}.

$$
T(n)=\tan ^{(2 n-1)}(0)
$$

$\tan ^{(2 n-1)}(0)$ is the $(2 n-1)^{\text {st }}$ derivative of the tangent evaluated at 0 .

$$
\begin{gathered}
T(1)=1, T(2)=2, T(3)=16, T(4)=272 \\
T(5)=7936, T(6)=353792, T(7)=22368256
\end{gathered}
$$

Big Ramsey Degrees of (\mathbb{Q}, \leq)

In late 1960's Laver developed method of finding copies of \mathbb{Q} in \mathbb{Q} with bounded number of colours using Milliken's tree theorem.

Theorem (Devlin, 1979)

$$
\forall(0, \leq 0) \in \mathcal{O} \exists_{T=T(|O|) \in \omega} \forall_{k \geq 1}:(\mathbb{Q}, \leq) \longrightarrow(\mathbb{Q}, \leq)_{k, T}^{(0, \leq o)}
$$

$T(n)$ is the big Ramsey degree of n tuple in \mathbb{Q}.

$$
T(n)=\tan ^{(2 n-1)}(0)
$$

$\tan ^{(2 n-1)}(0)$ is the $(2 n-1)^{\text {st }}$ derivative of the tangent evaluated at 0 .

$$
T(1)=1, T(2)=2, T(3)=16, T(4)=272,
$$

$$
T(5)=7936, T(6)=353792, T(7)=22368256
$$

Trees (terminology)

- A tree is a (possibly empty) partially ordered set $\left(T,<_{T}\right)$ such that, for every $t \in T$, the set $\left\{s \in T: s<_{T} t\right\}$ is finite and linearly ordered by $<_{T}$. All trees considered are finite or countable.

$\left(2^{<7}, \sqsubseteq\right)$

Trees (terminology)

$\left(2^{<7}, \sqsubseteq\right)$

- A tree is a (possibly empty) partially ordered set ($T,<_{T}$) such that, for every $t \in T$, the set $\left\{s \in T: s<_{T} t\right\}$ is finite and linearly ordered by $<_{T}$. All trees considered are finite or countable.
- Tree is rooted, that is, they have a unique minimal element called the root of the tree.

Trees (terminology)

- A tree is a (possibly empty) partially ordered set ($T,<_{T}$) such that, for every $t \in T$, the set $\left\{s \in T: s<_{T} t\right\}$ is finite and linearly ordered by $<_{T}$. All trees considered are finite or countable.
- Tree is rooted, that is, they have a unique minimal element called the root of the tree.
- An element $t \in T$ of a tree T is called a node of T and its level, denoted by $\ell_{T}(t)$, is the size of the set
$\{s \in T: s<T t\}$.

$$
\left(2^{<7}, \sqsubseteq\right)
$$

Trees (terminology)

$\left(2^{<7}, \sqsubseteq\right)$

- A tree is a (possibly empty) partially ordered set ($T,<_{T}$) such that, for every $t \in T$, the set $\left\{s \in T: s<_{T} t\right\}$ is finite and linearly ordered by $<_{T}$. All trees considered are finite or countable.
- Tree is rooted, that is, they have a unique minimal element called the root of the tree.
- An element $t \in T$ of a tree T is called a node of T and its level, denoted by $\ell_{T}(t)$, is the size of the set $\{s \in T: s<T t\}$.
- We use $T(n)$ to denote the set of all nodes of T at level n. Similarly $T(<n)$ denotes an initial segment of the tree consisting of all nodes of level less than n.

Trees (terminology)

$\left(2^{<7}, \sqsubseteq\right)$

- A tree is a (possibly empty) partially ordered set ($T,<_{T}$) such that, for every $t \in T$, the set $\left\{s \in T: s<_{T} t\right\}$ is finite and linearly ordered by $<_{T}$. All trees considered are finite or countable.
- Tree is rooted, that is, they have a unique minimal element called the root of the tree.
- An element $t \in T$ of a tree T is called a node of T and its level, denoted by $\ell_{T}(t)$, is the size of the set $\left\{s \in T: s<_{T} t\right\}$.
- We use $T(n)$ to denote the set of all nodes of T at level n. Similarly $T(<n)$ denotes an initial segment of the tree consisting of all nodes of level less than n.
- For $s, t \in T$, the meet $s \wedge_{T} t$ of s and t is the largest $s^{\prime} \in T$ such that $s^{\prime} \leq_{T} s$ and $s^{\prime} \leq_{T} t$.

Trees (terminology)

$\left(2^{<7}, \sqsubseteq\right)$

- A tree is a (possibly empty) partially ordered set ($T,<_{T}$) such that, for every $t \in T$, the set $\left\{s \in T: s<_{T} t\right\}$ is finite and linearly ordered by $<_{T}$. All trees considered are finite or countable.
- Tree is rooted, that is, they have a unique minimal element called the root of the tree.
- An element $t \in T$ of a tree T is called a node of T and its level, denoted by $\ell_{T}(t)$, is the size of the set $\{s \in T: s<T t\}$.
- We use $T(n)$ to denote the set of all nodes of T at level n. Similarly $T(<n)$ denotes an initial segment of the tree consisting of all nodes of level less than n.
- For $s, t \in T$, the meet $s \wedge_{T} t$ of s and t is the largest $s^{\prime} \in T$ such that $s^{\prime} \leq_{T} s$ and $s^{\prime} \leq_{T} t$.
- The height of T, denoted by $h(T)$, is the minimal natural number h such that $T(h)=\emptyset$. If there is no such number h, then we say that the height of T is ω.

Subtrees and strong subtrees

- A subtree of a tree T is a subset $S \subseteq T$ viewed as a tree equipped with the induced partial ordering.
- Given a tree T and nodes $s, t \in T$ we say that s is a successor of t in T if $t \leq_{T} s$.
- The node s is an immediate successor of t in T if $t<_{T} S$ and there is no $s^{\prime} \in T$ such that $t<_{T} s^{\prime}<_{T} S$.
- Node with no successors is leaf.

Strong subtree

Definition

Let T be rooted tree. Nonempty $\mathbf{S} \subseteq \mathbf{T}$ is a strong subtree of T of height $n \in \omega+1$ if:
(1) S is closed for meets. (In particular, S is rooted.)

Strong subtree

Definition

Let T be rooted tree. Nonempty $\mathbf{S} \subseteq \mathbf{T}$ is a strong subtree of T of height $n \in \omega+1$ if:
(1) S is closed for meets. (In particular, S is rooted.)
(2) For every $a \in S(<(n-1))$ and every immediate successor b of a in T there is an unique immediate successor c of a in S such that $a \sqsubseteq b \sqsubseteq c$. (If $n=\omega$ then every $a \in S$.)

Strong subtree

Definition

Let T be rooted tree. Nonempty $\mathbf{S} \subseteq \mathbf{T}$ is a strong subtree of T of height $n \in \omega+1$ if:
(1) S is closed for meets. (In particular, S is rooted.)
(2) For every $a \in S(<(n-1))$ and every immediate successor b of a in T there is an unique immediate successor c of a in S such that $a \sqsubseteq b \sqsubseteq c$. (If $n=\omega$ then every $a \in S$.)
(3) S is level preserving: Every level of S is a subset of some level of T.

Strong subtree

Definition

Let T be rooted tree. Nonempty $\mathbf{S} \subseteq \mathbf{T}$ is a strong subtree of T of height $n \in \omega+1$ if:
(1) S is closed for meets. (In particular, S is rooted.)
(2) For every $a \in S(<(n-1))$ and every immediate successor b of a in T there is an unique immediate successor c of a in S such that $a \sqsubseteq b \sqsubseteq c$. (If $n=\omega$ then every $a \in S$.)
(3) S is level preserving: Every level of S is a subset of some level of T.

Strong subtree

Definition

Let T be rooted tree. Nonempty $\mathbf{S} \subseteq \mathbf{T}$ is a strong subtree of T of height $n \in \omega+1$ if:
(1) S is closed for meets. (In particular, S is rooted.)
(2) For every $a \in S(<(n-1))$ and every immediate successor b of a in T there is an unique immediate successor c of a in S such that $a \sqsubseteq b \sqsubseteq c$. (If $n=\omega$ then every $a \in S$.)
(3) S is level preserving: Every level of S is a subset of some level of T.

Strong subtree

Definition

Let T be rooted tree. Nonempty $\mathbf{S} \subseteq \mathbf{T}$ is a strong subtree of T of height $n \in \omega+1$ if:
(1) S is closed for meets. (In particular, S is rooted.)
(2) For every $a \in S(<(n-1))$ and every immediate successor b of a in T there is an unique immediate successor c of a in S such that $a \sqsubseteq b \sqsubseteq c$. (If $n=\omega$ then every $a \in S$.)
(3) S is level preserving: Every level of S is a subset of some level of T.

Strong subtree

Definition

Let T be rooted tree. Nonempty $\mathbf{S} \subseteq \mathbf{T}$ is a strong subtree of T of height $n \in \omega+1$ if:
(1) S is closed for meets. (In particular, S is rooted.)
(2) For every $a \in S(<(n-1))$ and every immediate successor b of a in T there is an unique immediate successor c of a in S such that $a \sqsubseteq b \sqsubseteq c$. (If $n=\omega$ then every $a \in S$.)
(3) S is level preserving: Every level of S is a subset of some level of T.

Strong subtree

Definition

Let T be rooted tree. Nonempty $\mathbf{S} \subseteq \mathbf{T}$ is a strong subtree of T of height $n \in \omega+1$ if:
(1) S is closed for meets. (In particular, S is rooted.)
(2) For every $a \in S(<(n-1))$ and every immediate successor b of a in T there is an unique immediate successor c of a in S such that $a \sqsubseteq b \sqsubseteq c$. (If $n=\omega$ then every $a \in S$.)
(3) S is level preserving: Every level of S is a subset of some level of T.

Strong subtree

Definition

Let T be rooted tree. Nonempty $\mathbf{S} \subseteq \mathbf{T}$ is a strong subtree of T of height $n \in \omega+1$ if:
(1) S is closed for meets. (In particular, S is rooted.)
(2) For every $a \in S(<(n-1))$ and every immediate successor b of a in T there is an unique immediate successor c of a in S such that $a \sqsubseteq b \sqsubseteq c$. (If $n=\omega$ then every $a \in S$.)
(3) S is level preserving: Every level of S is a subset of some level of T.
(4) S has height n.

Ramsey-type theorem for strong subtrees

Let T be a tree and $k \in \omega+1$. We use $\operatorname{Str}_{k}(T)$ to denote the set of all strong subtrees of T of height k.

Theorem (Milliken 1979)

For every rooted finitely branching tree T with no leaves, every $k \in \omega$ and every finite colouring of $\operatorname{Str}_{k}(T)$ there is $S \in \operatorname{Str}_{\omega}(T)$ such that the set $\operatorname{Str}_{k}(S)$ is monochromatic.

Ramsey-type theorem for strong subtrees

Let T be a tree and $k \in \omega+1$. We use $\operatorname{Str}_{k}(T)$ to denote the set of all strong subtrees of T of height k.

Theorem (Milliken 1979)

For every rooted finitely branching tree T with no leaves, every $k \in \omega$ and every finite colouring of $\operatorname{Str}_{k}(T)$ there is $S \in \operatorname{Str}_{\omega}(T)$ such that the set $\operatorname{Str}_{k}(S)$ is monochromatic.

The difficult case to prove is $k=1$ (Halpern-Läuchli Theorem, 1966)

Ramsey-type theorem for strong subtrees

Let T be a tree and $k \in \omega+1$. We use $\operatorname{Str}_{k}(T)$ to denote the set of all strong subtrees of T of height k.

Theorem (Milliken 1979)

For every rooted finitely branching tree T with no leaves, every $k \in \omega$ and every finite colouring of $\operatorname{Str}_{k}(T)$ there is $S \in \operatorname{Str}_{\omega}(T)$ such that the set $\operatorname{Str}_{k}(S)$ is monochromatic.

The difficult case to prove is $k=1$ (Halpern-Läuchli Theorem, 1966)

Ramsey-type theorem for strong subtrees

Let T be a tree and $k \in \omega+1$. We use $\operatorname{Str}_{k}(T)$ to denote the set of all strong subtrees of T of height k.

Theorem (Milliken 1979)

For every rooted finitely branching tree T with no leaves, every $k \in \omega$ and every finite colouring of $\operatorname{Str}_{k}(T)$ there is $S \in \operatorname{Str}_{\omega}(T)$ such that the set $\operatorname{Str}_{k}(S)$ is monochromatic.

The difficult case to prove is $k=1$ (Halpern-Läuchli Theorem, 1966)

Notice that for regularly branching tree the strong subtree is isomorphic to the original tree.

Big Ramsey degrees using Milliken tree theorem

We aim to prove:
Theorem (Laver, late 1969)

$$
\forall\left(0, \leq_{0}\right) \in \mathcal{O} \exists_{T=T(|O|) \in \omega} \forall_{k \geq 1}:(\mathbb{Q}, \leq) \longrightarrow(\mathbb{Q}, \leq)_{k, T}^{(O, \leq o)}
$$

Big Ramsey degrees using Milliken tree theorem

We aim to prove:
Theorem (Laver, late 1969)

$$
\forall(0, \leq 0) \in \mathcal{O} \exists_{T=T(|O|) \in \omega} \forall_{k \geq 1}:(\mathbb{Q}, \leq) \longrightarrow(\mathbb{Q}, \leq)_{k, T}^{(0, \leq 0)}
$$

Easy case $|O|=1$:

Big Ramsey degrees using Milliken tree theorem

We aim to prove:
Theorem (Laver, late 1969)

$$
\forall(0, \leq 0) \in \mathcal{O} \exists_{T=T(|O|) \in \omega} \forall_{k \geq 1}:(\mathbb{Q}, \leq) \longrightarrow(\mathbb{Q}, \leq)_{k, T}^{(0, \leq o)}
$$

Easy case $|O|=1$:
(1) Nodes of the binary tree $2^{<\omega}$ ordered "from left to right" yields (\mathbb{Q}, \leq).

Big Ramsey degrees using Milliken tree theorem

We aim to prove:

Theorem (Laver, late 1969)

$$
\forall(0, \leq 0) \in \mathcal{O} \exists_{T=T(|O|) \in \omega} \forall_{k \geq 1}:(\mathbb{Q}, \leq) \longrightarrow(\mathbb{Q}, \leq)_{k, T}^{(O, \leq o)}
$$

Easy case $|O|=1$:
(1) Nodes of the binary tree $2^{<\omega}$ ordered "from left to right" yields (\mathbb{Q}, \leq).
(2) Finite colouring (\mathbb{Q}, \leq) gives a finite colouring of the nodes of the infinite binary tree.

Big Ramsey degrees using Milliken tree theorem

We aim to prove:

Theorem (Laver, late 1969)

$$
\forall(0, \leq 0) \in \mathcal{O} \exists_{T=T(|O|) \in \omega} \forall_{k \geq 1}:(\mathbb{Q}, \leq) \longrightarrow(\mathbb{Q}, \leq)_{k, T}^{(O, \leq o)}
$$

Easy case $|O|=1$:
(1) Nodes of the binary tree $2^{<\omega}$ ordered "from left to right" yields (\mathbb{Q}, \leq).
(2) Finite colouring (\mathbb{Q}, \leq) gives a finite colouring of the nodes of the infinite binary tree.
(3) Using the Halpern-Läuchli's theorem we can find a strong subtree which is monochromatic.
(4) Strong subtree is isomorphic to the original binary tree and also isomorphic to (\mathbb{Q}, \leq) when ordered lexicographically
\Longrightarrow we found the monochromatic copy!

Big Ramsey degrees using Milliken tree theorem

We aim to prove:

Theorem (Laver, late 1969)

$$
\forall\left(0, \leq_{0}\right) \in \mathcal{O} \exists_{T=T(|O|) \in \omega} \forall_{k \geq 1}:(\mathbb{Q}, \leq) \longrightarrow(\mathbb{Q}, \leq)_{k, T}^{(O, \leq o)}
$$

Easy case $|O|=1$:
(1) Nodes of the binary tree $2^{<\omega}$ ordered "from left to right" yields (\mathbb{Q}, \leq).
(2) Finite colouring (\mathbb{Q}, \leq) gives a finite colouring of the nodes of the infinite binary tree.
(3) Using the Halpern-Läuchli's theorem we can find a strong subtree which is monochromatic.
(4) Strong subtree is isomorphic to the original binary tree and also isomorphic to (\mathbb{Q}, \leq) when ordered lexicographically
\Longrightarrow we found the monochromatic copy!

Big Ramsey degrees using Milliken tree theorem

We aim to prove:

Theorem (Laver, late 1969)

$$
\forall\left(0, \leq_{0}\right) \in \mathcal{O} \exists_{T=T(|O|) \in \omega} \forall_{k \geq 1}:(\mathbb{Q}, \leq) \longrightarrow(\mathbb{Q}, \leq)_{k, T}^{(O, \leq o)}
$$

Easy case $|O|=1$:
(1) Nodes of the binary tree $2^{<\omega}$ ordered "from left to right" yields (\mathbb{Q}, \leq).
(2) Finite colouring (\mathbb{Q}, \leq) gives a finite colouring of the nodes of the infinite binary tree.
(3) Using the Halpern-Läuchli's theorem we can find a strong subtree which is monochromatic.
(4) Strong subtree is isomorphic to the original binary tree and also isomorphic to (\mathbb{Q}, \leq) when ordered lexicographically
\Longrightarrow we found the monochromatic copy!
If $|O|=n>1$ we transfer colourings of n-tuples of nodes to colouring of strong subtrees.

Envelopes of subsets

- Given a subset X of tree T, an envelope is any strong subtree S of T containing X.
- Envelope is minimal if $h(S)$ is minimized.

Envelopes of subsets

- Given a subset X of tree T, an envelope is any strong subtree S of T containing X.
- Envelope is minimal if $h(S)$ is minimized.
- Envelope can be constructed by first doing the meet-closure of X (adding at most $|X|-1$ extra levels) and then adding extra nodes as necessary to get strong subtree (without adding new levels).

Envelopes of subsets

- Given a subset X of tree T, an envelope is any strong subtree S of T containing X.
- Envelope is minimal if $h(S)$ is minimized.
- Envelope can be constructed by first doing the meet-closure of X (adding at most $|X|-1$ extra levels) and then adding extra nodes as necessary to get strong subtree (without adding new levels).

Envelopes of subsets

- Given a subset X of tree T, an envelope is any strong subtree S of T containing X.
- Envelope is minimal if $h(S)$ is minimized.
- Envelope can be constructed by first doing the meet-closure of X (adding at most $|X|-1$ extra levels) and then adding extra nodes as necessary to get strong subtree (without adding new levels).

Observation

A minimal envelope of every finite X has height at most $2|X|-1$.

Envelopes of subsets

- Given a subset X of tree T, an envelope is any strong subtree S of T containing X.
- Envelope is minimal if $h(S)$ is minimized.
- Envelope can be constructed by first doing the meet-closure of X (adding at most $|X|-1$ extra levels) and then adding extra nodes as necessary to get strong subtree (without adding new levels).

Observation

A minimal envelope of every finite X has height at most $2|X|-1$.
Multiple choices of X may lead to a same envelope. We speak of different embedding types within a given envelope.

Big Ramsey degrees using Milliken tree theorem

Now we can finish proof of:
Theorem (Laver, late 1969)

$$
\forall\left(0, \leq_{0}\right) \in \mathcal{O} \exists_{T=T(|O|) \in \omega} \forall_{k \geq 1}:(\mathbb{Q}, \leq) \longrightarrow(\mathbb{Q}, \leq)_{k, T}^{(O, \leq o)}
$$

Proof.

(1) Fix $\left(O, \leq_{0}\right) \in \mathcal{O}$ and put $n=|O|$.
(2) $T(n)$ is the number of embedding types of n-tuples in the binary tree.

- Recall that height of each envelope is at most $2 n-1$.
- Every embedding type is thus an suset of $2^{<2 n}$.

Big Ramsey degrees using Milliken tree theorem

Now we can finish proof of:
Theorem (Laver, late 1969)

$$
\forall\left(0, \leq_{0}\right) \in \mathcal{O} \exists_{T=T(|O|) \in \omega} \forall_{k \geq 1}:(\mathbb{Q}, \leq) \longrightarrow(\mathbb{Q}, \leq)_{k, T}^{(O, \leq o)}
$$

Proof.

(1) Fix $\left(O, \leq_{0}\right) \in \mathcal{O}$ and put $n=|O|$.
(2) $T(n)$ is the number of embedding types of n-tuples in the binary tree.

- Recall that height of each envelope is at most $2 n-1$.
- Every embedding type is thus an suset of $2^{<2 n}$.
(3) Fix a finite colouring of n-tuples

Big Ramsey degrees using Milliken tree theorem

Now we can finish proof of:
Theorem (Laver, late 1969)

$$
\forall\left(0, \leq_{0}\right) \in \mathcal{O} \exists_{T=T(|O|) \in \omega} \forall_{k \geq 1}:(\mathbb{Q}, \leq) \longrightarrow(\mathbb{Q}, \leq)_{k, T}^{(O, \leq o)}
$$

Proof.

(1) Fix $\left(O, \leq_{0}\right) \in \mathcal{O}$ and put $n=|O|$.
(2) $T(n)$ is the number of embedding types of n-tuples in the binary tree.

- Recall that height of each envelope is at most $2 n-1$.
- Every embedding type is thus an suset of $2^{<2 n}$.
(3) Fix a finite colouring of n-tuples
(4) For each embedding type construct colouring of envelopes and pass to a monochromatic subtree by the application of Milliken tree theorem.

Big Ramsey degrees using Milliken tree theorem

Now we can finish proof of:
Theorem (Laver, late 1969)

$$
\forall(0, \leq 0) \in \mathcal{O} \exists_{T=T(|O|) \in \omega} \forall_{k \geq 1}:(\mathbb{Q}, \leq) \longrightarrow(\mathbb{Q}, \leq)_{k, T}^{(0, \leq o)}
$$

Proof.

(1) Fix $(O, \leq 0) \in \mathcal{O}$ and put $n=|O|$.
(2) $T(n)$ is the number of embedding types of n-tuples in the binary tree.

- Recall that height of each envelope is at most $2 n-1$.
- Every embedding type is thus an suset of $2^{<2 n}$.
(3) Fix a finite colouring of n-tuples
(4) For each embedding type construct colouring of envelopes and pass to a monochromatic subtree by the application of Milliken tree theorem.
(5) The resulting copy will have at most $T(n)$ different colours

Big Ramsey degrees of (\mathbb{Q}, \leq) are finite!

Devlin types

Definition (Devlin types)
$A \subseteq 2^{<\omega}$ is a Devlin embedding type iff it is an antichain and for every $0 \leq \ell<\max _{a \in A}|a|$ precisely one of the following happens:

Devlin types

Definition (Devlin types)

$A \subseteq 2^{<\omega}$ is a Devlin embedding type iff it is an antichain and for every $0 \leq \ell<\max _{a \in A}|a|$ precisely one of the following happens:
(1) Leaf: There exists precisely one $a \in A$ with $|a|=\ell$.

Moreover for every $b \in A,|b|>\ell$ it holds that $b(\ell)=0$.

Devlin types

Definition (Devlin types)

$A \subseteq 2^{<\omega}$ is a Devlin embedding type iff it is an antichain and for every $0 \leq \ell<\max _{a \in A}|a|$ precisely one of the following happens:
(1) Leaf: There exists precisely one $a \in A$ with $|a|=\ell$.

Moreover for every $b \in A,|b|>\ell$ it holds that $b(\ell)=0$.
(2) Branching: There exists $a, b \in A,|a|,|b|>\ell$ such that $a(\ell)=0, b(\ell)=1$ and moreover for every $c \in A,|c| \geq \ell$ whose iniital segment of length ℓ is different form b it holds that $|c|>\ell$ and $c(\ell)=0$.

Devlin types

Definition (Devlin types)

$A \subseteq 2^{<\omega}$ is a Devlin embedding type iff it is an antichain and for every $0 \leq \ell<\max _{a \in A}|a|$ precisely one of the following happens:
(1) Leaf: There exists precisely one $a \in A$ with $|a|=\ell$. Moreover for every $b \in A,|b|>\ell$ it holds that $b(\ell)=0$.
(2) Branching: There exists $a, b \in A,|a|,|b|>\ell$ such that $a(\ell)=0, b(\ell)=1$ and moreover for every $c \in A,|c| \geq \ell$ whose iniital segment of length ℓ is different form b it holds that $|c|>\ell$ and $c(\ell)=0$.

Devlin types

Definition (Devlin types)

$A \subseteq 2^{<\omega}$ is a Devlin embedding type iff it is an antichain and for every $0 \leq \ell<\max _{a \in A}|a|$ precisely one of the following happens:
(1) Leaf: There exists precisely one $a \in A$ with $|a|=\ell$.

Moreover for every $b \in A,|b|>\ell$ it holds that $b(\ell)=0$.
(2) Branching: There exists $a, b \in A,|a|,|b|>\ell$ such that $a(\ell)=0, b(\ell)=1$ and moreover for every $c \in A,|c| \geq \ell$ whose iniital segment of length ℓ is different form b it holds that $|c|>\ell$ and $c(\ell)=0$.

Devlin types

Definition (Devlin types)

$A \subseteq 2^{<\omega}$ is a Devlin embedding type iff it is an antichain and for
every $0 \leq \ell<\max _{a \in A}|a|$ precisely one of the following happens:
(1) Leaf: There exists precisely one $a \in A$ with $|a|=\ell$.

Moreover for every $b \in A,|b|>\ell$ it holds that $b(\ell)=0$.
(2) Branching: There exists $a, b \in A,|a|,|b|>\ell$ such that $a(\ell)=0, b(\ell)=1$ and moreover for every $c \in A,|c| \geq \ell$ whose iniital segment of length ℓ is different form b it holds that $|c|>\ell$ and $c(\ell)=0$.

Fun fact: Number of Devlin types of size n is

$$
t_{n}=\sum_{\ell=1}^{n-1}\binom{2 n-2}{2 \ell-1} t_{\ell} \cdot t_{n-\ell} \text { with } n_{1}=1
$$

This is well known sequence (of the odd tangent numbers).

The characterisation of the big Ramsey degrees

Theorem (Devlin, 1979)

$$
\forall(0, \leq 0) \in \mathcal{O} \exists_{T=T(|O|) \in \omega} \forall_{k \geq 1}:(\mathbb{Q}, \leq) \longrightarrow(\mathbb{Q}, \leq)_{k, T}^{(O, \leq o)}
$$

Where minimal T satisfying the statement above is the number of Devlin types of size $|O|$

Lemma

There exists Devlin type representing (\mathbb{Q}, \leq) (with "left to right" order of the binary tree).

The characterisation of the big Ramsey degrees

Theorem (Devlin, 1979)

$$
\forall(0, \leq 0) \in \mathcal{O} \exists_{T=T(|O|) \in \omega} \forall_{k \geq 1}:(\mathbb{Q}, \leq) \longrightarrow(\mathbb{Q}, \leq)_{k, T}^{(O, \leq o)}
$$

Where minimal T satisfying the statement above is the number of Devlin types of size $|O|$

Lemma

There exists Devlin type representing (\mathbb{Q}, \leq) (with "left to right" order of the binary tree).

Proof.

Enumerate (\mathbb{Q}, \leq) and build the Delvin type (carefully) via induction.

The characterisation of the big Ramsey degrees

Theorem (Devlin, 1979)

$$
\forall(0, \leq 0) \in \mathcal{O} \exists_{T=T(|O|) \in \omega} \forall_{k \geq 1}:(\mathbb{Q}, \leq) \longrightarrow(\mathbb{Q}, \leq)_{k, T}^{(O, \leq o)}
$$

Where minimal T satisfying the statement above is the number of Devlin types of size $|O|$

Lemma

There exists Devlin type representing (\mathbb{Q}, \leq) (with "left to right" order of the binary tree).

Proof.

Enumerate (\mathbb{Q}, \leq) and build the Delvin type (carefully) via induction.

The characterisation of the big Ramsey degrees

Theorem (Devlin, 1979)

$$
\forall(0, \leq 0) \in \mathcal{O} \exists_{T=T(|O|) \in \omega} \forall_{k \geq 1}:(\mathbb{Q}, \leq) \longrightarrow(\mathbb{Q}, \leq)_{k, T}^{(O, \leq o)}
$$

Where minimal T satisfying the statement above is the number of Devlin types of size $|O|$

Lemma

There exists Devlin type representing (\mathbb{Q}, \leq) (with "left to right" order of the binary tree).

Proof.

Enumerate (\mathbb{Q}, \leq) and build the Delvin type (carefully) via induction.

The characterisation of the big Ramsey degrees

Theorem (Devlin, 1979)

$$
\forall(0, \leq 0) \in \mathcal{O} \exists_{T=T(|O|) \in \omega} \forall_{k \geq 1}:(\mathbb{Q}, \leq) \longrightarrow(\mathbb{Q}, \leq)_{k, T}^{(O, \leq o)}
$$

Where minimal T satisfying the statement above is the number of Devlin types of size $|O|$

Lemma

There exists Devlin type representing (\mathbb{Q}, \leq) (with "left to right" order of the binary tree).

Proof.

Enumerate (\mathbb{Q}, \leq) and build the Delvin type (carefully) via induction.

The characterisation of the big Ramsey degrees

Theorem (Devlin, 1979)

$$
\forall(0, \leq 0) \in \mathcal{O} \exists_{T=T(|O|) \in \omega} \forall_{k \geq 1}:(\mathbb{Q}, \leq) \longrightarrow(\mathbb{Q}, \leq)_{k, T}^{(O, \leq o)}
$$

Where minimal T satisfying the statement above is the number of Devlin types of size $|O|$

Lemma

There exists Devlin type representing (\mathbb{Q}, \leq) (with "left to right" order of the binary tree).

Proof.

Enumerate (\mathbb{Q}, \leq) and build the Delvin type (carefully) via induction.

The characterisation of the big Ramsey degrees

Theorem (Devlin, 1979)

$$
\forall(0, \leq 0) \in \mathcal{O} \exists_{T=T(|O|) \in \omega} \forall_{k \geq 1}:(\mathbb{Q}, \leq) \longrightarrow(\mathbb{Q}, \leq)_{k, T}^{(O, \leq o)}
$$

Where minimal T satisfying the statement above is the number of Devlin types of size $|O|$

Lemma

There exists Devlin type representing (\mathbb{Q}, \leq) (with "left to right" order of the binary tree).

Proof.

Enumerate (\mathbb{Q}, \leq) and build the Delvin type (carefully) via induction.

The characterisation of the big Ramsey degrees

Theorem (Devlin, 1979)

$$
\forall(0, \leq 0) \in \mathcal{O} \exists_{T=T(|O|) \in \omega} \forall_{k \geq 1}:(\mathbb{Q}, \leq) \longrightarrow(\mathbb{Q}, \leq)_{k, T}^{(O, \leq o)}
$$

Where minimal T satisfying the statement above is the number of Devlin types of size $|O|$

Lemma

There exists Devlin type representing (\mathbb{Q}, \leq) (with "left to right" order of the binary tree).

Proof.

Enumerate (\mathbb{Q}, \leq) and build the Delvin type (carefully) via induction.

The characterisation of the big Ramsey degrees

Theorem (Devlin, 1979)

$$
\forall(0, \leq 0) \in \mathcal{O} \exists_{T=T(|O|) \in \omega} \forall_{k \geq 1}:(\mathbb{Q}, \leq) \longrightarrow(\mathbb{Q}, \leq)_{k, T}^{(O, \leq o)}
$$

Where minimal T satisfying the statement above is the number of Devlin types of size $|O|$

Lemma

There exists Devlin type representing (\mathbb{Q}, \leq) (with "left to right" order of the binary tree).

Proof.

Enumerate (\mathbb{Q}, \leq) and build the Delvin type (carefully) via induction.

The characterisation of the big Ramsey degrees

Theorem (Devlin, 1979)

$$
\forall(0, \leq 0) \in \mathcal{O} \exists_{T=T(|O|) \in \omega} \forall_{k \geq 1}:(\mathbb{Q}, \leq) \longrightarrow(\mathbb{Q}, \leq)_{k, T}^{(O, \leq o)}
$$

Where minimal T satisfying the statement above is the number of Devlin types of size $|O|$

Lemma

There exists Devlin type representing (\mathbb{Q}, \leq) (with "left to right" order of the binary tree).

Proof.

Enumerate (\mathbb{Q}, \leq) and build the Delvin type (carefully) via induction.

The characterisation of the big Ramsey degrees

Theorem (Devlin, 1979)

$$
\forall(0, \leq 0) \in \mathcal{O} \exists_{T=T(|O|) \in \omega} \forall_{k \geq 1}:(\mathbb{Q}, \leq) \longrightarrow(\mathbb{Q}, \leq)_{k, T}^{(O, \leq o)}
$$

Where minimal T satisfying the statement above is the number of Devlin types of size $|O|$

Lemma

There exists Devlin type representing (\mathbb{Q}, \leq) (with "left to right" order of the binary tree).

Proof.

Enumerate (\mathbb{Q}, \leq) and build the Delvin type (carefully) via induction.

The characterisation of the big Ramsey degrees

Theorem (Devlin, 1979)

$$
\forall(0, \leq 0) \in \mathcal{O} \exists_{T=T(|O|) \in \omega} \forall_{k \geq 1}:(\mathbb{Q}, \leq) \longrightarrow(\mathbb{Q}, \leq)_{k, T}^{(O, \leq o)}
$$

Where minimal T satisfying the statement above is the number of Devlin types of size $|O|$

Lemma

There exists Devlin type representing (\mathbb{Q}, \leq) (with "left to right" order of the binary tree).

Lemma

If $B \subset A$ is a subset of Devlin type A, then the embedding type of B inside every minimal envelope is a Devlin type.

Proof.

Recall that in Devlin type on every is either leaf or branching. Minimal envelope will include all those levels where branching or leaf of B happens and skip all others.

The characterisation of the big Ramsey degrees

Theorem (Devlin, 1979)

$$
\forall(0, \leq 0) \in \mathcal{O} \exists_{T=T(|O|) \in \omega} \forall_{k \geq 1}:(\mathbb{Q}, \leq) \longrightarrow(\mathbb{Q}, \leq)_{k, T}^{(O, \leq o)}
$$

Where minimal T satisfying the statement above is the number of Devlin types of size $|O|$

Lemma

There exists Devlin type representing (\mathbb{Q}, \leq) (with "left to right" order of the binary tree).

Lemma

If $B \subset A$ is a subset of Devlin type A, then the embedding type of B inside every minimal envelope is a Devlin type.

Proof.

Recall that in Devlin type on every is either leaf or branching. Minimal envelope will include all those levels where branching or leaf of B happens and skip all others.

We thus obtain an upper bound: $T(|O|)$ is at most the number of Devlin types.

The lower bound

Lemma

Let A be a Devlin type representing (\mathbb{Q}, \leq) and $B \subseteq A$ a copy of (\mathbb{Q}, \leq) then there exists a $C \subseteq B$ whose embedding type (inside a minimal envelope) is A.

The lower bound

Lemma

Let A be a Devlin type representing (\mathbb{Q}, \leq) and $B \subseteq A$ a copy of (\mathbb{Q}, \leq) then there exists a $C \subseteq B$ whose embedding type (inside a minimal envelope) is A.

Proof by a slide-show.

The lower bound

Lemma

Let A be a Devlin type representing (\mathbb{Q}, \leq) and $B \subseteq A$ a copy of (\mathbb{Q}, \leq) then there exists a $C \subseteq B$ whose embedding type (inside a minimal envelope) is A.

Proof by a slide-show.

Proceed by induction on the individual branching/leaf events of A.

The lower bound

Lemma

Let A be a Devlin type representing (\mathbb{Q}, \leq) and $B \subseteq A$ a copy of (\mathbb{Q}, \leq) then there exists a $C \subseteq B$ whose embedding type (inside a minimal envelope) is A.

Proof by a slide-show.

Proceed by induction on the individual branching/leaf events of A.
First produce meet of B. A starts with a branching. Place the root of A to this meet.

The lower bound

Lemma

Let A be a Devlin type representing (\mathbb{Q}, \leq) and $B \subseteq A$ a copy of (\mathbb{Q}, \leq) then there exists a $C \subseteq B$ whose embedding type (inside a minimal envelope) is A.

Proof by a slide-show.

Proceed by induction on the individual branching/leaf events of A.
First produce meet of B. A starts with a branching. Place the root of A to this meet.

The lower bound

Lemma

Let A be a Devlin type representing (\mathbb{Q}, \leq) and $B \subseteq A$ a copy of (\mathbb{Q}, \leq) then there exists a $C \subseteq B$ whose embedding type (inside a minimal envelope) is A.

Proof by a slide-show.

Proceed by induction on the individual branching/leaf events of A.
The meet splits leafs of B into two infinite intervals. Each with meet above its son.

The lower bound

Lemma

Let A be a Devlin type representing (\mathbb{Q}, \leq) and $B \subseteq A$ a copy of (\mathbb{Q}, \leq) then there exists a $C \subseteq B$ whose embedding type (inside a minimal envelope) is A.

Proof by a slide-show.

Proceed by induction on the individual branching/leaf events of A. Use corresponding meet to realize 2nd branching of A.

The lower bound

Lemma

Let A be a Devlin type representing (\mathbb{Q}, \leq) and $B \subseteq A$ a copy of (\mathbb{Q}, \leq) then there exists a $C \subseteq B$ whose embedding type (inside a minimal envelope) is A.

Proof by a slide-show.

Proceed by induction on the individual branching/leaf events of A. B further subdivides into intervals.

The lower bound

Lemma

Let A be a Devlin type representing (\mathbb{Q}, \leq) and $B \subseteq A$ a copy of (\mathbb{Q}, \leq) then there exists a $C \subseteq B$ whose embedding type (inside a minimal envelope) is A.

Proof by a slide-show.

Proceed by induction on the individual branching/leaf events of A.
Continue analogously with next branching.

The lower bound

Lemma

Let A be a Devlin type representing (\mathbb{Q}, \leq) and $B \subseteq A$ a copy of (\mathbb{Q}, \leq) then there exists a $C \subseteq B$ whose embedding type (inside a minimal envelope) is A.

Proof by a slide-show.

Proceed by induction on the individual branching/leaf events of A.
Place the first leaf of A into corresponding interval.

The lower bound

Lemma

Let A be a Devlin type representing (\mathbb{Q}, \leq) and $B \subseteq A$ a copy of (\mathbb{Q}, \leq) then there exists a $C \subseteq B$ whose embedding type (inside a minimal envelope) is A.

Proof by a slide-show.

Proceed by induction on the individual branching/leaf events of A.
... blablabla... proof done.

Victory!

We characterised the big Ramsey degrees of rationals and gave a closed-form formula.
This shows that the upper bound proof is best possible. It also has applications to topological dynamics

Kechris-Pestov-Todorčević: Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups Zucker: Big Ramsey degrees and topological dynamics

Big Ramsey degrees of \mathbf{R}

Definition

A (countable) structure \mathbf{A} is (ultra) homogeneous if every its partial isomorphism extends to an automorphism.

Big Ramsey degrees of \mathbf{R}

Definition

A (countable) structure \mathbf{A} is (ultra) homogeneous if every its partial isomorphism extends to an automorphism.

- We denote by \mathbf{R} the Rado (or random) graph. This is the unique homogeneous and universal countable graph. (By universal we mean that every countable graph has an embedding to R.)

Big Ramsey degrees of \mathbf{R}

Definition

A (countable) structure \mathbf{A} is (ultra) homogeneous if every its partial isomorphism extends to an automorphism.

- We denote by \mathbf{R} the Rado (or random) graph. This is the unique homogeneous and universal countable graph. (By universal we mean that every countable graph has an embedding to R.)
- We denote by \mathcal{G} the class of all finite graphs.

Theorem

$$
\forall_{\mathbf{A} \in \mathcal{G}} \exists_{T=T^{\prime}(\mathbf{A}) \in \omega} \forall_{k \geq 1}: \mathbf{R} \longrightarrow(\mathbf{R})_{k, T}^{\mathbf{A}} .
$$

This theorem was published by Sauer in 2006 and also appears in Todorčević' Introduction to Ramsey spaces. Values of $T^{\prime}(\mathbf{G})$ were characterised by Laflamme-Sauer-Vuksanović in 2010.

Big Ramsey degrees of \mathbf{R}

Definition

A (countable) structure \mathbf{A} is (ultra) homogeneous if every its partial isomorphism extends to an automorphism.

- We denote by \mathbf{R} the Rado (or random) graph. This is the unique homogeneous and universal countable graph. (By universal we mean that every countable graph has an embedding to R.)
- We denote by \mathcal{G} the class of all finite graphs.

Theorem

$$
\forall_{\mathbf{A} \in \mathcal{G}} \exists \exists_{T=T^{\prime}(\mathbf{A}) \in \omega} \forall_{k \geq 1}: \mathbf{R} \longrightarrow(\mathbf{R})_{k, T}^{\mathbf{A}} .
$$

A finitary version is (probably more) famous!
Theorem (Nešetřil-Rödl 1977, Abramson-Harington 1978)

$$
\forall_{\mathbf{A} \in \mathcal{G}} \exists_{t=t(\mathbf{A}) \in \omega} \forall_{\mathbf{B} \in \mathcal{G}, k \geq 1} \exists_{\mathbf{c}} \in \mathcal{G}: \mathbf{C} \longrightarrow(\mathbf{B})_{k, t}^{\mathbf{A}} .
$$

Understanding the unavoidable colourings

While trying to formulate Ramsey-type theorem it is good to check if there are any unavoidable colourings and if so understand their structure.

Understanding the unavoidable colourings

While trying to formulate Ramsey-type theorem it is good to check if there are any unavoidable colourings and if so understand their structure.

For (\mathbb{Q}, \leq) we have the Sierpiński colourings. Can we do something similar for the Rado graph?

Understanding the unavoidable colourings of Rado graphs

Passing number graph

Definition (Graph G)

We will consider graph \mathbf{G} :
(1) Vertices: $2^{<\omega}$
(2) Vertices $a, b \in 2^{<\omega}$ satisfying $|a|<|b|$ forms and edge if and only if $b(|a|)=1$.
(3) There are no other edges.

Passing number graph

Definition (Graph G)

We will consider graph \mathbf{G} :
(1) Vertices: $2^{<\omega}$
(2) Vertices $a, b \in 2^{<\omega}$ satisfying $|a|<|b|$ forms and edge if and only if $b(|a|)=1$.
(3) There are no other edges.

Passing number graph

Definition (Graph G)

We will consider graph \mathbf{G} :
(1) Vertices: $2^{<\omega}$
(2) Vertices $a, b \in 2^{<\omega}$ satisfying $|a|<|b|$ forms and edge if and only if $b(|a|)=1$.
(3) There are no other edges.

Passing number graph

Definition (Graph G)

We will consider graph \mathbf{G} :
(1) Vertices: $2^{<\omega}$
(2) Vertices $a, b \in 2^{<\omega}$ satisfying $|a|<|b|$ forms and edge if and only if $b(|a|)=1$.
(3) There are no other edges.

The upper bound

Lemma

\mathbf{G} is universal: the Rado graph \mathbf{R} embeds to \mathbf{G}.

Proof.

Assume that the vertex set of \mathbf{R} is ω. The vertex $i \in \omega$ then corresponds to a sequence a of length i with $a(j)=1$ if and only if $i \sim j$.

The upper bound

Lemma

\mathbf{G} is universal: the Rado graph \mathbf{R} embeds to \mathbf{G}.

Proof.

Assume that the vertex set of \mathbf{R} is ω. The vertex $i \in \omega$ then corresponds to a sequence a of length i with $a(j)=1$ if and only if $i \sim j$.

Lemma

The definition of \mathbf{G} is stable for passing into a strong subtrees: if S is a strong subtree of $2^{<\omega}$ then it is also a copy of \mathbf{G} in \mathbf{G}

We thus can repeat precisely the same proof as before to obtain the upper bound on big Ramsey degrees.

Theorem

$$
\forall_{\mathbf{A} \in \mathcal{G}} \exists_{T=T^{\prime}(\mathbf{A}) \in \omega} \forall_{k \geq 1}: \mathbf{R} \longrightarrow(\mathbf{R})_{k, T}^{\mathbf{A}} .
$$

The upper bound

Lemma

\mathbf{G} is universal: the Rado graph \mathbf{R} embeds to \mathbf{G}.

Proof.

Assume that the vertex set of \mathbf{R} is ω. The vertex $i \in \omega$ then corresponds to a sequence a of length i with $a(j)=1$ if and only if $i \sim j$.

Lemma

The definition of \mathbf{G} is stable for passing into a strong subtrees: if S is a strong subtree of $2^{<\omega}$ then it is also a copy of \mathbf{G} in \mathbf{G}

We thus can repeat precisely the same proof as before to obtain the upper bound on big Ramsey degrees.

Theorem

$$
\forall_{\mathbf{A} \in \mathcal{G}} \exists_{T=T^{\prime}(\mathbf{A}) \in \omega} \forall_{k \geq 1}: \mathbf{R} \longrightarrow(\mathbf{R})_{k, T}^{\mathbf{A}} .
$$

Lower bounds needs a bit more care.

Thank you for the attention

Most we covered today is in S . Todorčević, Introduction to Ramsey spaces

- Halpern, Läuchli: A partition theorem, Transactions of the American Mathematical Society 124 (2) (1966), 260-367.
- F. Galvin: Partition theorems for the real line, Notices Amer. Math. Soc. 15 (1968).
- F. Galvin: Errata to "Partition theorems for the real line", Notices Amer. Math. Soc. 16 (1969).
- K. Milliken: A Ramsey theorem for trees, Journal of Combinatorial Theory, Series A 26 (3) (1979), 215-237.
- P. Erdős, A. Hajnal: Unsolved and solved problems in set theory, Proceedings of the Tarski Symposium (Berkeley, Calif., 1971). (Laver's proof is first mentioned here)
- J. Nešetriil, V. Rödl: A structural generalization of the Ramsey theorem, Bulletin of the American Mathematical Society 83 (1) (1977), 127-128.
- F. Abramson, L. Harrington: Models without indiscernibles, Journal of Symbolic Logic 43 (1978) 572-600.
- D. Devlin: Some partition theorems and ultrafilters on ω, PhD thesis, Dartmouth College, 1979.
- N. Sauer: Coloring subgraphs of the Rado graph, Combinatorica 26 (2) (2006), 231-253.
- C. Laflamme, L. Nguyen Van Thé, N. W. Sauer, Partition properties of the dense local order and a colored version of Milliken's theorem, Combinatorica 30(1) (2010), 83-104.

