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Recall

Theorem ((Infinite) Ramsey Theorem, 1930)

∀p,k≥1 : ω −→ (ω)p
k,1.

Theorem (Devlin, 1979)

∀(O,≤O)∈O∃T=T (|O|)∈ω∀k≥1 : (Q,≤) −→ (Q,≤)
(O,≤O)
k,T .

T (n) is the big Ramsey degree of n tuple in Q.

T (n) = tan(2n−1)(0).

T (1) = 1,T (2) = 2,T (3) = 16,T (4) = 272,

T (5) = 7936,T (6) = 353792,T (7) = 22368256

The proof (due to Laver) makes essential use of the Milliken tree theorem. This proof may
seem bit arbitrary. However trees are essential (arise naturally as rich colourings). Precise
bounds can be understood as a justification that this is the only approach.
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Story so far
1 We well-ordered Q and produced tree of types

x0

x1

x2

x3
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x6

x5

2 We a gave coloring of Q (by shapes of trees) so every copy of Q has “many colors”

x0
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3 We applied Milliken tree theorem to find copy of Q with “few colors”

0 1

00 01 10 11

000 001 010 011 100 101 110 111

4 We described colors as structures of compatible partial orders, so “few”=“many”
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Big Ramsey degrees of the Rado graph

1 Enumerate R and produce tree of types

x0

x1

x2

x3

x4

x6

x5

R

v0

v1

v2

2 Give a coloring of R (by shapes of trees) so every copy of R has “many colors”

x0

x1

x2

x3

x4

x6

x5

x0

x1

x2

x3

x4

x6
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R

v0

v1

v2

3 Apply Milliken tree theorem to find copy of R with “few colors”

0 1

00 01 10 11

000 001 010 011 100 101 110 111

0 1

00 01 10 11

000 001 010 011 100 101 110 111

4 Describe minimal set of colors as structures, so “few”=“many”



Some more recent results on big Ramsey degrees

1 Nguyen Van Thé (2009): Characterisation of big Ramsey degrees of homogeneous ultrametric
spaces

2 Laflamme, Nguyen Van Thé, Sauer (2010): Characterisation of big Ramsey degrees of
homogeneous dense local order.

3 Dobrinen (2020): Big Ramsey degrees of universal homogeneous triangle-free graphs are finite

4 Dobrinen (2023): Big Ramsey degrees of universal homogeneous Kk -free graphs are finite for
every k ≥ 3.

5 Zucker (2022): Big Ramsey degrees of Fraïssé limits of free amalgamation classes in binary
language with finitely many forbidden substructures are finite.

6 Balko, Chodounský, H., Konečný, Vena (2022): Big Ramsey degrees of 3-uniform hypergraphs
are finite.

7 H. (2020+): Big Ramsey degrees of partial orders and metric spaces are finite.

8 Balko, Chodounský, Dobrinen, H., Konečný, Nešetřil, Vena, Zucker (2021): Big Ramsey
degrees of structures described by induced cycles are finite.

9 Balko, Chodounský, Dobrinen, H., Konečný, Vena, Zucker (2021+): Characterisation of big
Ramsey degrees of Fraïssé limits of free amalgamation classes in binary language with finitely
many constraints.

10 Bice, de Rancourt, H., Konečný: metric big Ramsey degrees of ℓ∞ and the Urysohn sphere,
(2023+).
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6 Balko, Chodounský, H., Konečný, Vena (2022): Big Ramsey degrees of 3-uniform hypergraphs
are finite.

7 H. (2020+): Big Ramsey degrees of partial orders and metric spaces are finite.
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Big Ramsey degrees of restricted structures

Let G3 be the class of all finite triangle-free graphs.

Theorem (Dobrinen 2020)

Every (countable) universal triangle-free graph R3 has finite big Ramsey degrees:

∀A∈G3∃T=T (|A|)∈ω∀k≥1 : R3 −→ (R3)
(A)
k,T .

Let P be the class of all finite partial orders.

Theorem (J. H. 2020+)

Every (countable) universal partial order (P,≤) has finite big Ramsey degrees:

∀(O,≤)∈P∃T=T (|O|)∈ω∀k≥1 : (P,≤) −→ (P,≤)
(O,≤)
k,T .

Universality: every countable partial order has embedding to (P,≤).
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Parameter words

Definition (Parameter word)

Given a finite alphabet Σ and k ∈ ω+ 1, a k -parameter word is a (possibly infinite) word W
in alphabet Σ ∪ {λi : 0 ≤ i < k} such that ∀i ∈ k word W contains λi and for every
j ∈ k − 1, the first occurrence of λj+1 appears after the first occurrence of λj .

Example (2-parameter word)

Σ = {L,X,R}.
LRLλ0λ0Xλ1λ0R

Definition (Substitution)

LRLλ0λ0Xλ1λ0R(LR) = LRLLLXRLR
LRLλ0λ0Xλ1λ0R(X) = LRLXXX

For set S of parameter words and a parameter word W :

W (S) = {W (U) : U ∈ S}.
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Ramsey theorem for parameter words

The following infinitary version of Graham–Rothschild Theorem is a direct consequence of
the Carlson–Simpson theorem. It was also independently proved by Voight in 1983
(apparently unpublished):

Theorem (Ramsey theorem for parameter words)

Let Σ be a finite alphabet and k ≥ 0 a finite integer. If the set of all finite k-parameter
words in alphabet Σ is coloured by finitely many colours, then there exists a
monochromatic infinite-parameter word W.

By W being monochromatic we mean that for every pair of k -parameter words U,V the
colour of W (U) is the same as colour of W (V ).



Parameter words as subtrees
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Parameter words as subtrees

0 1
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W = 0λ00λ0λ1λ0



Definition

Given a finite alphabet Σ, a finite integer k ≥ 0 and a finite set k -parameter words, an
envelope of S is every n-parameter word W (for some n ≥ k ) such that

∀w∈S∃uW (u) = w .

Example

Envelopes of {0,000} are: 0λ0λ0, 0λ00, 0λ00λ1, . . . .

Proposition (Envelopes are bounded)

Let Σ be a finite alphabet, and k , s ≥ 0 be a finite integers. Then there exists T (|Σ|, s, k)
such that for every set S of size s of k -parameter words in alphabet Σ there exists an
envelope of S with at most T (|Σ|, s, k) parameters.

Proof.

U = 0 1 1 0 1
V = 0 0 1 1 0 1

Envelope: 0 λ0 1 λ1 λ0 λ2
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Triangle-free graph on 1-parameter words

λ

0λ λ0 λλ

00λ 0λ0 0λλ λ00 λ0λ λλ0 λλλ

Put Σ = {0}.

Definition (Triangle-free graph G)

• Vertices of G are all finite 1-parameter words in alphabet Σ.

• For 1-parameter words u, v satisfying |u| < |v | we put u ∼ v (u adjacent to v ) iff
1 V|U| = λ and
2 for no i ∈ |u| it holds that Ui = Vi = λ.

Key observation 1: G is an universal triangle-free graph.
Key observation 2: For every pair of 1-parameter words U and V and every ω-parameter
W

U ∼ V ⇐⇒ W (U) ∼ W (V ).



Triangle-free graph on 1-parameter words

λ

0λ λ0 λλ

00λ 0λ0 0λλ λ00 λ0λ λλ0 λλλ

Put Σ = {0}.

Definition (Triangle-free graph G)

• Vertices of G are all finite 1-parameter words in alphabet Σ.
• For 1-parameter words u, v satisfying |u| < |v | we put u ∼ v (u adjacent to v ) iff

1 V|U| = λ

and
2 for no i ∈ |u| it holds that Ui = Vi = λ.

Key observation 1: G is an universal triangle-free graph.
Key observation 2: For every pair of 1-parameter words U and V and every ω-parameter
W

U ∼ V ⇐⇒ W (U) ∼ W (V ).



Triangle-free graph on 1-parameter words

λ

0λ λ0 λλ

00λ 0λ0 0λλ λ00 λ0λ λλ0 λλλ

Put Σ = {0}.

Definition (Triangle-free graph G)

• Vertices of G are all finite 1-parameter words in alphabet Σ.
• For 1-parameter words u, v satisfying |u| < |v | we put u ∼ v (u adjacent to v ) iff

1 V|U| = λ

and
2 for no i ∈ |u| it holds that Ui = Vi = λ.

Key observation 1: G is an universal triangle-free graph.
Key observation 2: For every pair of 1-parameter words U and V and every ω-parameter
W

U ∼ V ⇐⇒ W (U) ∼ W (V ).



Triangle-free graph on 1-parameter words

λ

0λ λ0 λλ

00λ 0λ0 0λλ λ00 λ0λ λλ0 λλλ

Put Σ = {0}.

Definition (Triangle-free graph G)

• Vertices of G are all finite 1-parameter words in alphabet Σ.
• For 1-parameter words u, v satisfying |u| < |v | we put u ∼ v (u adjacent to v ) iff

1 V|U| = λ

and
2 for no i ∈ |u| it holds that Ui = Vi = λ.

Key observation 1: G is an universal triangle-free graph.
Key observation 2: For every pair of 1-parameter words U and V and every ω-parameter
W

U ∼ V ⇐⇒ W (U) ∼ W (V ).



Triangle-free graph on 1-parameter words

λ

0λ λ0 λλ

00λ 0λ0 0λλ λ00 λ0λ λλ0 λλλ

Put Σ = {0}.

Definition (Triangle-free graph G)

• Vertices of G are all finite 1-parameter words in alphabet Σ.
• For 1-parameter words u, v satisfying |u| < |v | we put u ∼ v (u adjacent to v ) iff

1 V|U| = λ

and
2 for no i ∈ |u| it holds that Ui = Vi = λ.

Key observation 1: G is an universal triangle-free graph.
Key observation 2: For every pair of 1-parameter words U and V and every ω-parameter
W

U ∼ V ⇐⇒ W (U) ∼ W (V ).



Triangle-free graph on 1-parameter words

λ

0λ λ0 λλ

00λ 0λ0 0λλ λ00 λ0λ λλ0 λλλ

Put Σ = {0}.

Definition (Triangle-free graph G)

• Vertices of G are all finite 1-parameter words in alphabet Σ.
• For 1-parameter words u, v satisfying |u| < |v | we put u ∼ v (u adjacent to v ) iff

1 V|U| = λ

and
2 for no i ∈ |u| it holds that Ui = Vi = λ.

Key observation 1: G is an universal triangle-free graph.
Key observation 2: For every pair of 1-parameter words U and V and every ω-parameter
W

U ∼ V ⇐⇒ W (U) ∼ W (V ).



Triangle-free graph on 1-parameter words

λ

0λ λ0 λλ

00λ 0λ0 0λλ λ00 λ0λ λλ0 λλλ

Put Σ = {0}.

Definition (Triangle-free graph G)

• Vertices of G are all finite 1-parameter words in alphabet Σ.
• For 1-parameter words u, v satisfying |u| < |v | we put u ∼ v (u adjacent to v ) iff

1 V|U| = λ and
2 for no i ∈ |u| it holds that Ui = Vi = λ.

Key observation 1: G is an universal triangle-free graph.
Key observation 2: For every pair of 1-parameter words U and V and every ω-parameter
W

U ∼ V ⇐⇒ W (U) ∼ W (V ).



Triangle-free graph on 1-parameter words

Put Σ = {0}.

Definition (Triangle-free graph G)

• Vertices of G are all finite 1-parameter words in alphabet Σ.
• For 1-parameter words u, v satisfying |u| < |v | we put u ∼ v (u adjacent to v ) iff

1 V|U| = λ and
2 for no i ∈ |u| it holds that Ui = Vi = λ.

Key observation 1: G is an universal triangle-free graph.
Key observation 2: For every pair of 1-parameter words U and V and every ω-parameter
W

U ∼ V ⇐⇒ W (U) ∼ W (V ).



Triangle-free graph on 1-parameter words

Put Σ = {0}.

Definition (Triangle-free graph G)

• Vertices of G are all finite 1-parameter words in alphabet Σ.
• For 1-parameter words u, v satisfying |u| < |v | we put u ∼ v (u adjacent to v ) iff

1 V|U| = λ and
2 for no i ∈ |u| it holds that Ui = Vi = λ.

Key observation 1: G is an universal triangle-free graph.

Key observation 2: For every pair of 1-parameter words U and V and every ω-parameter
W

U ∼ V ⇐⇒ W (U) ∼ W (V ).



Triangle-free graph on 1-parameter words

Put Σ = {0}.

Definition (Triangle-free graph G)

• Vertices of G are all finite 1-parameter words in alphabet Σ.
• For 1-parameter words u, v satisfying |u| < |v | we put u ∼ v (u adjacent to v ) iff

1 V|U| = λ and
2 for no i ∈ |u| it holds that Ui = Vi = λ.

Key observation 1: G is an universal triangle-free graph.
Given any triangle-free graph H with vertex set ω assign every i ∈ ω word w of length i
putting ∀j<i wj = λ iff {i , j} is an edge of H.

Key observation 2: For every pair of
1-parameter words U and V and every ω-parameter W

U ∼ V ⇐⇒ W (U) ∼ W (V ).



Triangle-free graph on 1-parameter words

Put Σ = {0}.

Definition (Triangle-free graph G)

• Vertices of G are all finite 1-parameter words in alphabet Σ.
• For 1-parameter words u, v satisfying |u| < |v | we put u ∼ v (u adjacent to v ) iff

1 V|U| = λ and
2 for no i ∈ |u| it holds that Ui = Vi = λ.

Key observation 1: G is an universal triangle-free graph.
Key observation 2: For every pair of 1-parameter words U and V and every ω-parameter
W

U ∼ V ⇐⇒ W (U) ∼ W (V ).



Observation

G is a universal triangle-free graph.

Observation

For every infinite-parameter word W it holds that u ∼ v ⇐⇒ W (u) ∼ W (v).
(Substitution is also graph embedding on G → G.)

Theorem (Ramsey theorem for parameter words)

Let Σ be a finite alphabet and k ≥ 0 a finite integer. If the set of all finite k-parameter words in
alphabet Σ is coloured by finitely many colours, then there exists a monochromatic
infinite-parameter word W.

Proposition (Envelopes are bounded)

There exists T (|Σ|, s, k) such that for every set S of size s of k -parameter words in alphabet Σ there
exists an envelope of S with at most T (|Σ|, s, k) parameters.

Theorem (Dobrinen 2020)

The big Ramsey degrees of universal triangle-free graph are finite.

Proof.

Fix graph A and a finite coloring of
(G

A

)
. Because envelopes of copies of A are bounded, apply the

theorem above for every embedding type and obtain a copy of G with bounded number of colors.



Partial order on infinite ternary tree

x0

L RX

Put Σ = {L,X,R} and order L <lex X <lex R.

Definition (Partial order (Σ∗,⪯))

For w ,w ′ ∈ Σ∗ we put w ≺ w ′ if and only if there exists 0 ≤ i < min(|w |, |w ′|) such that
1 (wi ,w ′

i ) = (L,R) and
2 for every 0 ≤ j < i it holds that wj ≤lex w ′

j .

Key observations: ⪯ is universal partial order and is stable for substitution.
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Higher order duals?

0
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Σ2 = { }, Σ3 = {
}
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Trees with a successor operation

While most Ramsey-type theorems are concerned about regularly branching trees, we need more
general notion allowing trees with finite but unbounded branching.

Definition (S-tree)

An S-tree is a quadruple (T ,⪯,Σ,S) where (T ,⪯) is a countable finitely branching tree with finitely
many nodes of level 0, Σ is a set called the alphabet and S is a partial function
S : T × T<ω × Σ → T called the successor operation satisfying the following three axioms:

1 If S(a, p̄, c) is defined for some base a ∈ T , parameter p̄ ∈ T<ω and character c ∈ Σ, then
S(a, p̄, c) is an immediate successor of a and all nodes in p̄ have levels at most ℓ(a)− 1.

2 For every node a ∈ T and its immediate successor b, there exist p̄ ∈ T<ω and c ∈ Σ such that
b = S(a, p̄, c).

Example: a binary tree

Consider S-tree is (2<ω,⊑, {0, 1},S).
S is defined only for empty parameters p̄ by concatenation: S(a, c) = a⌢c.

S(S(S(S(S((), 0), 1), 0), 1), 1) = 01011.
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Shape-preserving functions

Definition (Shape-preserving functions)

Let (T ,⪯,Σ,S) be an S-tree. We call an injection F : T → T shape-preserving if

1 F is level preserving:

(∀a,b∈T ) : (ℓ(a) = ℓ(b)) =⇒ (ℓ(F (a)) = ℓ(F (b)))

2 F is weakly S-preserving:

(∀a∈T ,p̄∈T<ω,c∈Σ) : S(a, p̄, c) is defined =⇒ S(F (a),F (p̄), c) ⪯ F (S(a, p̄, c)).

3 For every a ∈ T (0) and b such that a ⪯ b it also holds that a ⪯ F (b).

Given S ⊆ T , we also call a function f : S → T shape-preserving if it extends to a shape-preserving
function F : T → T .
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Monoids of shape-preserving functions
For a level-preserving function F : S → T , we denote by F̃ the function F̃ : ℓ(S) → ω defined by
F̃ (n) = ℓ(F (a)) for some a ∈ S with ℓ(a) = n.
We say that F is skipping level m if m /∈ F̃ [ω] and that F is skipping only level m if F̃ [ω] = ω \ {m}.

Definition ((S,M)-tree)

Given an S-tree (T ,⪯,Σ,S) and a monoid M of some shape-preserving functions T → T , we call
(T ,⪯,Σ,S,M) an (S,M)-tree if the following three conditions are satisfied:

1 M forms a closed monoid: M contains the identity and is closed for compositions and limits.

2 M admits decompositions: For every n ∈ ω and F ∈ M skipping level F̃ (n)− 1 there exist
F1,F2 ∈ M such that F2 skips only level F̃ (n)− 1 and F2 ◦ F1 ↾T (≤n)= F ↾T (≤n) .

F F1 F2

3 M is closed for duplication: For all n and m with n < m ∈ ω, there exists a function F n
m ∈ M

skipping only level m such that for every a ∈ T (n), b ∈ T (m), p̄ ∈ T<ω and c ∈ Σ, where
S(a, p̄, c) is defined and S(a, p̄, c) ⪯ b, we have F n

m(b) = S(b, p̄, c).

F 2
0 F 2

1
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Ramsey theorem for trees with successor operation
Put Mn = {F ∈ M : F ↾T (<n) is identity}, AMn

k = {F ↾T (<n+k): F ∈ Mn}.

Theorem (Balko, Dobrinen, Chodounský, H., Konečný, Nešetřil, Zucker, yesterday)

Let (T ,⪯,Σ,S,M) be an (S,M)-tree. Then, for every pair n, k ∈ ω and every finite coloring χ of
AMn

k , there exists F ∈ Mn such that χ is constant when restricted to {F ◦ g : g ∈ AMn
k}.

Put AMn
k (m) = {f : f ∈ AMn

k and F̃ (n + k − 1) = m}.

Corollary

Let (T ,⪯,Σ,S,M) be an (S,M)-tree. Then, for every quadruple n, k ,m, r ∈ ω there exists N ∈ ω
such that for every r -coloring χ : AMn

k (N) → r , there exists F ∈ AMn
m(N) such that χ is constant

when restricted to {F ◦ g : g ∈ AMn
k (m)}.

Examples

Consider S-tree (Σ<ω,⊑,Σ,S) for some finite alphabet Σ.

1 If |Σ| = 1 we obtain Ramsey theorem.

2 If |Σ| > 1 and M consists of all shape-preserving functions we obtain Milliken tree theorem.

3 If |Σ| > 1 and M is generated only by duplication functions we obtain dual Ramsey theorem.

4 If |Σ| > 1 and M is generated only by duplication and “constant” functions we obtain
Graham–Rothschild theorem theorem.
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Ellentuck topology on (S,M)-trees

Recall that a subset X of a topological space is

1 nowhere dense if every non-empty open set contains a non-empty open subset that avoids X .

2 meager if is the union of countably many nowhere dense sets,

3 has the Baire property if it can be written as the symmetric difference of an open set and a
meager set.

Put AM = {F ↾T (<n): F ∈ M, n ∈ ω}.

Definition (Ellentuck topological space M)

Given an (S,M)-tree (T ,⪯,Σ,S,M) we equip M with the Ellentuck topology given by the following
basic open sets:

[f ,F ] = {F ◦ F ′ : F ′ ∈ M and F ◦ F ′ extends f}
for every f ∈ AM and F ∈ M.



Topological Ramsey theorem for trees with successor operation
Given a shape-preserving function F ∈ M and f : T (≤n) → T such that f ∈ AM we define
depthF (f ) = g̃(n) for g ∈ AM satisfying F ◦ g = f . We set depthF (f ) = ω if there is no such g.

Definition

Let X be a subset of M.

1 We call X Ramsey if for every non-empty basic set [f ,F ] there is F ′ ∈ [F ↾depthF (f ),F ] such that
either [f ,F ′] ⊆ X or [f ,F ′] ∩ X = ∅.

2 We call X Ramsey null if for every [f ,F ] ̸= ∅ we can find F ′ ∈ [F ↾depthF (f ),F ] s. t. [f ,F ′]∩X = ∅.

Theorem (Ellentuck theorem for shape-preserving functions)

Let (T ,⪯,Σ,S,M) be an (S,M)-tree and consider M with the Ellentuck topology. Then every
property of Baire subset of M is Ramsey and every meager subset is Ramsey null.

Examples

Consider S-tree (Σ<ω,⊑,Σ,S) for some finite alphabet Σ.

1 If |Σ| = 0 we obtain Ellentuck theorem.

2 If |Σ| > 1 and M consists of all shape-preserving functions =⇒ Milliken theorem.

3 If |Σ| > 1 and M is generated only by duplication functions =⇒ Carlson–Simpson theorem.
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Proof outline

1 1-dimensional pigeonhole is proved using Hales-Jewett theorem
(duplication is important here).

2 Method of (combinatorial) forcing is used to prove ω-dimensional pigeonhole on a stronger
notion of “fat subtrees”.

3 Todorčević axioms of Ramsey spaces are used to obtain a Ramsey space of fat subtrees.

4 Topological Ramsey theorem for trees with successor operation follows as a consequence.

We obtain an interesting example of Ramsey space where Todorčević A3.2 axiom is not satisfied.



Our new theorem on regularly branching trees

Definition (Boring extensions)

Given finite alphabet Σ, a family of boring extensions is a countable sequence E = (En)n∈ω of sets

En ⊆ {e is a function e : Σn → Σ}

satisfying the following two conditions:

1 Duplication:

For every m < n the set En contains a function en
m : Σn → Σ defined by:

en
m(a) = am for every a ∈ Σn.

2 Insertion: For every m ≤ n, e1 ∈ Em, e2 ∈ En there exists e3 ∈ En+1 such that for every a ∈ Σm

and b ∈ Σn−m the following is satisfied:

e3(a⌢e1(a)⌢b) = e2(a⌢b).
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Generalized embedding types

Definition (Interesting levels)

Given a finite alphabet Σ, a family of boring extensions E and a set X ⊆ Σ<ω we denote by IE(X )
the set of interesting levels of X . This is a set of all ℓ ∈ ω such that there is no eℓ ∈ Eℓ satisfying for
every a ∈ X , |a| ≥ ℓ

(a|ℓ)⌢eℓ(a|ℓ) ⊑ a.

0 1
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Definition (Embedding type)

Given a finite alphabet Σ, a family of boring extensions E and a set X ⊆ Σ<ω we define the
embedding type of X , denoted τE(X ), to be the set of all words created from words in X by removing
all letters with indices not in IE(X ).
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Coloring subsets of a given embedding type

Given a finite alphabet Σ, a family of boring extensions E and sets X ,Y ⊆ Σ<ω we put(
Y

X/E

)
=
{

X ′ ⊆ Y : τE
(
X ′) = τE (X )

}
.

Theorem (BCDHKNZ 2023+, Colouring sets of given embedding type in a finite tree)

For every finite alphabet Σ, family of boring extensions E , positive integer r , finite set X ⊆ Σ<ω and
(possibly infinite) set Y ⊆ Σ<ω and every finite colouring χ of

(
Σ<ω

X/E

)
→ r there exists Y ′ ∈

(
Σ<ω

Y/E

)
such that χ is constant when restricted to

( Y ′

X/E

)
.

Theorem (BCDHKNZ 2023+, Colouring sets of given embedding type in a combinatorial cube)

For every finite alphabet Σ, family of boring extensions E , positive integers m, n, r and (finite) sets
X ⊆ Σm, Y ⊆ Σn there exists N ∈ ω such that for every r -colouring χ :

(
ΣN

X/E

)
→ r there exists

Y ′ ∈
(

ΣN

Y/E

)
such that χ is constant when restricted to

( Y ′

X/E

)
.
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