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Recall: Laver–Devlin’s proof of Big Ramsey degrees of rationals
1 We well-ordered Q and produced tree of types
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2 We a gave coloring of Q (by shapes of trees) so every copy of Q has “many colors”
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3 We applied Milliken tree theorem to find copy of Q with “few colors”
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4 We described colors as structures of compatible partial orders, so “few”=“many”



Recall: Trees with a successor operation
While most Ramsey-type theorems are concerned about regularly branching trees, we need more
general notion allowing trees with finite but unbounded branching.

Definition (S-tree)

An S-tree is a quadruple (T ,⪯,Σ,S) where (T ,⪯) is a countable finitely branching tree with finitely
many nodes of level 0, Σ is a set called the alphabet and S is a partial function
S : T × T<ω × Σ → T called the successor operation satisfying the following three axioms:

1 If S(a, p̄, c) is defined for some base a ∈ T , parameter p̄ ∈ T<ω and character c ∈ Σ, then
S(a, p̄, c) is an immediate successor of a and all nodes in p̄ have levels at most ℓ(a)− 1.

2 For every node a ∈ T and its immediate successor b, there exist p̄ ∈ T<ω and c ∈ Σ such that
b = S(a, p̄, c).



Recall: Shape-preserving functions

Definition (Shape-preserving functions)

Let (T ,⪯,Σ,S) be an S-tree. We call an injection F : T → T shape-preserving if

1 F is level preserving:

(∀a,b∈T ) : (ℓ(a) = ℓ(b)) =⇒ (ℓ(F (a)) = ℓ(F (b)))

2 F is weakly S-preserving:

(∀a∈T ,p̄∈T<ω,c∈Σ) : S(a, p̄, c) is defined =⇒ S(F (a),F (p̄), c) ⪯ F (S(a, p̄, c)).

3 For every a ∈ T (0) and b such that a ⪯ b it also holds that a ⪯ F (b).

Given S ⊆ T , we also call a function f : S → T shape-preserving if it extends to a shape-preserving
function F : T → T .
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Recall: Monoids of shape-preserving functions

For a level-preserving function F : S → T , we denote by F̃ the function F̃ : ℓ(S) → ω defined by
F̃ (n) = ℓ(F (a)) for some a ∈ S with ℓ(a) = n.
We say that F is skipping level m if m /∈ F̃ [ω] and that F is skipping only level m if F̃ [ω] = ω \ {m}.

Definition ((S,M)-tree)

Given an S-tree (T ,⪯,Σ,S) and a monoid M of some shape-preserving functions T → T , we call
(T ,⪯,Σ,S,M) an (S,M)-tree if the following three conditions are satisfied:

1 M forms a closed monoid: M contains the identity and is closed for compositions and limits.

2 M admits decompositions: For every n ∈ ω and F ∈ M skipping level F̃ (n)− 1 there exist
F1,F2 ∈ M such that F2 skips only level F̃ (n)− 1 and F2 ◦ F1 ↾T (≤n)= F ↾T (≤n) .

3 M is closed for duplication: For all n and m with n < m ∈ ω, there exists a function F n
m ∈ M

skipping only level m such that for every a ∈ T (n), b ∈ T (m), p̄ ∈ T<ω and c ∈ Σ, where
S(a, p̄, c) is defined and S(a, p̄, c) ⪯ b, we have F n

m(b) = S(b, p̄, c).



Recall: Topological Ramsey theorem for trees with successor
operation

Theorem (Balko, Dobrinen, Chodounský, H., Konečný, Nešetřil, Zucker
day before yesterday)

Let (T ,⪯,Σ,S,M) be an (S,M)-tree and consider M with the Ellentuck topology. Then
every property of Baire subset of M is Ramsey and every meager subset is Ramsey null.



Proof outline

1 1-dimensional pigeonhole is proved using Hales–Jewett theorem
(duplication is important here).

2 Method of (combinatorial) forcing is used to prove ω-dimensional pigeonhole on a stronger
notion of “fat subtrees”.

3 Todorčević axioms of Ramsey spaces are used to obtain a Ramsey space of fat subtrees.

4 Topological Ramsey theorem for trees with successor operation follows as a consequence.

We obtain an interesting example of Ramsey space where Todorčević A3.2 axiom is not satisfied.



Proof outline

1 1-dimensional pigeonhole is proved using Hales–Jewett theorem
(duplication is important here).

2 Method of (combinatorial) forcing is used to prove ω-dimensional pigeonhole on a stronger
notion of “fat subtrees”.

3 Todorčević axioms of Ramsey spaces are used to obtain a Ramsey space of fat subtrees.

4 Topological Ramsey theorem for trees with successor operation follows as a consequence.

We obtain an interesting example of Ramsey space where Todorčević A3.2 axiom is not satisfied.
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Application to free amalgamation classes

Theorem (Zucker 2022)

Let L be a finite binary language and F a finite family of irreducible L-structures. Then every
countable universal F-free structure has finite big Ramsey degrees.

L denotes an language containing of relational symbols. We consider standard model-theoretic
L-structures.

An L-structure A is irreducible if for every pair of vertices u, v there exists R ∈ L and x̄ ∈ RA
containing both u and v . (This is a generalization of a graph clique.)

An L-structure A is F-free if there is no F ∈ F that embeds to A.

F-free L-structure A is universal if every countable F-free L-structure embeds to A.

Proofs of upper
bounds on Big Ramsey degrees with non-trivial forbidden substructures:

1 N. Dobrinen: The Ramsey theory of the universal homogeneous triangle-free graph, Journal of
Mathematical Logic (2016–2020). 58 out of 75 pages. Using very special coding trees and
proof based on language of (set-theoretic) forcing.

2 N. Dobrinen: The Ramsey theory of Henson graphs, Journal of Mathematical Logic
(2019–2023). 61 out of 88 pages. Extends techniques of the previous paper for forbidding
graph cliques Kk .

3 A. Zucker: On big Ramsey degrees for binary free amalgamation classes, Advances in
Mathematics (2020–2022). 17 out of 25 pages. Simplified coding trees and general
construction for forbidding irreducible substructures in binary languages.

4 J. H.: On big Ramsey degrees for binary free amalgamation classes, arXiv:2009.00967
(2020+). 1.3 out of 20 pages. Using parameters spaces and all enumeration trees for
triangle-free graphs.

5 M. Balko, D. Chodounský, N. Dobrinen, J. H., M. Konečný, J. Nešetřil, A. Zucker: Ramsey
theorem for trees with successor operation. arXiv:2311.06872 (2023+). 9 out of 37 pages.
Using general tree theorem proved by combinatorial forcing and Todorčević’ Ramsey Space
axioms. All enumeration trees.
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Application to free amalgamation classes

Theorem (Zucker 2020+)

Let L be a finite binary language and F a finite family of irreducible L-structures. Then every
countable universal F-free structure has finite big Ramsey degrees.

Proofs of lower bounds:
1 M. Balko, D. Chodounský, N. Dobrinen, Jan Hubička, Matěj Konečný, Lluís Vena, and Andy

Zucker: Exact big Ramsey degrees via coding trees, arXiv:2110.08409v2 (2021–).
74 out of 97 pages.

2 M. Balko, D. Chodounský, N. Dobrinen, Jan Hubička, Matěj Konečný, Lluís Vena, and Andy
Zucker: Exact big Ramsey degrees for finitely constrained binary free amalgamation classes,
arXiv:2110.08409v3 (2023–).
36 out of 53 pages.

Infinite-dimensional extension:
1 N. Dobrinen, A. Zucker: Infinite-dimensional Ramsey theory for binary free amalgamation

classes, arXiv:2303.04246 (2023–). 42 pages.
Reverse mathematics:

1 P.-E. Anglés d’Auriac, P. A. Cholak, D. D. Dzhafarov, B. Monin, L. Patey: Milliken’s tree theorem
and its applications: a computability-theoretic perspective. To appear in Memoirs of AMS
(2020–). 174 pages.

2 P.-E. Angles d’Auriac, L. Liu, B. Mignoty, and L. Patey: Carlson–Simpson’s lemma and
applications in reverse mathematics (2022–), 17 pages.
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All enumerations tree
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Constructing all enumeration tree

Definition (Type)

Type of level n is an F-free L-structure A with vertices {0,1, . . . ,n − 1, t}, where t is the
type vertex.

Definition (Levelled type)

Levelled type of level n is a pair a = (A, flA) where A is a type of level n and fl : n \ {0} → n
is a function satisfying:

1 fla(i) < i .
2 whenever i < j forms an edge of A then flA(j) > i .

Nodes of an S-tree are levelled types ordered by inclusion. Successor operation is an
amalgamation.
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Non-forcing proof of Zucker’s theorem (sketch)

1 Build an S-tree of levelled types:

0

1

2

t

2 Verify decomposition and duplication on the monoid of all shape-preserving functions.
3 Define structure on nodes of the S-tree and verify that shape-preserving functions

preserve the structure
4 Verify that envelopes are bounded for nice copies inside nice enumerations (same

was as in Zucker’s paper)
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More general result

Theorem

Let L be a finite language consisting of unary and binary symbols, and let K be a
hereditary class of finite structures and k ≥ 2. Assume that every countable structure A
has a completion to K provided that every induced cycle in A (seen as a substructure) has
a completion in K and every irreducible substructure of A of k embeds into K. Then K has
a Fraïssé limit with finite big Ramsey degrees.

This result can be used to analyze all Cherlin’s catalogues of binary homogeneous
structures except for those described by infinitely many forbidden cliques (Henson graphs).



Connection to finite structural Ramsey theory



Ramsey classes

Definition

A class C of finite L-structures is Ramsey iff ∀A,B∈C∃C∈C : C −→ (B)A
2 , 1.(B

A

)
is the set of all embeddings of structure A to structure B.

C −→ (B)A
k,t : For every k -colouring of

(C
A

)
there exists f ∈

(C
B

)
such that

(f (B)
A

)
has at most t colours.

Example (Linear orders — Ramsey Theorem, 1930)

The class of all finite linear orders is a Ramsey class.

Example (Structures — Nešetřil–Rödl, 76; Abramson–Harrington, 78)

For every relational language L the class of all finite L-structures endowed with linear order of
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Every free amalgamation class of structures in relational language L endowed with linear order of
vertices is a Ramsey class.



Ramsey classes

Definition

A class C of finite L-structures is Ramsey iff ∀A,B∈C∃C∈C : C −→ (B)A
2 , 1.(B

A

)
is the set of all embeddings of structure A to structure B.

C −→ (B)A
k,t : For every k -colouring of

(C
A

)
there exists f ∈

(C
B

)
such that

(f (B)
A

)
has at most t colours.

Example (Linear orders — Ramsey Theorem, 1930)

The class of all finite linear orders is a Ramsey class.
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Definition (Amalgamation)
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Zucker 2020: All known big Ramsey degrees can be turned into a big Ramsey structure.
Ages of big Ramsey structures have amalgamation property.
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Fraïssé theory

Definition (Age)

Given structure A its age, Age(A), is the set of all finite structures with embedding to A.

Definition (Homogeneity)

Structure H is homogeneous if every isomorphism of its two finite (induced) substructures
(a partial automorphism of H) extends to an automorphism of H.

Theorem (Fraïssé, 1950s)

A hereditary, isomorphism-closed class K with countably many mutually non-isomorphic
structures is an age of a homogeneous structure A if and only if it has the amalgamation
property.

By Nešetřil’s observation ages of homogeneous structure are candidates for Ramsey
classes
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The Lachlan–Cherlin classification programme of homogeneous
structures

Theorem (Schmerl 1979)

Every homogeneous partial order is isomorphic to
one of the following:

1 a (possibly infinite) antichain,

2 a (possibly infinite) antichain of chains,

3 chain of antichains,

4 the generic partial order.

Theorem (Lachlan–Woodrow 1980)

Let G be an (countably) infinite homogeneous
graph. Then either G or its complement is
isomorphic to one of:

1 Rado graph (universal homogeneous graph),

2 universal homogeneous graph omitting
complete graphs of size n,

3 a disjoint union of complete graphs, all of
same size.

Theorem (Lachlan 1984)

Homogeneous tournaments are:

1 finite cases: one-point tournament, oriented
cycle of length 3.

2 (Q,≤)

3 dense local order,

4 generic tournament.

Classification of countable homogeneous
digraphs (Cherlin, 1998)
. . .
Metricaly homogeneous graphs (Cherlin, 2023+)



KPT-correspondence and Nešetřil’s classification Programme

Nešetřil’s classification Programme
Ramsey classes =⇒ amalgamation classes

⇑ ⇓
expansions of homogeneous ⇐= homogeneous structures

⇓ ⇑ ⇓
extremely amenable groups =⇒ universal minimal flows

Definition

Let L′ be language containing language L. A expansion of L-structure A is L′-structure A′

on the same vertex set such that all relations/functions in L ∩ L′ are identical.

Theorem (Nešetřil, 1989)

“All homogeneous graphs have Ramsey expansion.”

Theorem (Jasiński–Laflamme–Nguyen Van Thé–Woodrow, 2014)

All homogeneous digraphs have precompact Ramsey expansions with expansion
property.

Today all catalogues of homogeneous structures have corresponding Ramsey classes.
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The group of automorphisms of the Fraïssé limit of a amalgamation class K is extremely
amenable if and only if K is a Ramsey class.

Definition

Let L′ be language containing language L. A expansion of L-structure A is L′-structure A′

on the same vertex set such that all relations/functions in L ∩ L′ are identical.

Theorem (Nešetřil, 1989)
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“All homogeneous graphs have Ramsey expansion.”
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“All homogeneous graphs have Ramsey expansion.”
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Classification Programme of big Ramsey structures

1 Structures with finite big Ramsey degrees may lead to big Ramsey structures. This is
(in all known cases) the minimal expansion of original structure with big Ramsey
degree 1.

2 Big Ramsey structures leads to condensation flows
A. Zucker: Big Ramsey degrees and topological dynamics, Groups, Geometry, and
Dynamics, 2018.

3 Ages of big Ramsey structures are Ramsey

Question

Can we classify big Ramsey degrees of Fraïssé limits of known Ramsey classes?

It turns out that homogeneous structures are not optimal setup for classifying big Ramsey
degrees. The main difference is that all big Ramsey structures arise from well-ordering
and thus they are not homogeneous. Better formalism is work in progress.

A. Aranda, S. Braunfeld, D. Chodounský, H., M. Konečný, J. Nešetřil, and A. Zucker:
Type-respecting amalgamation and big Ramsey degrees, extended abstract in
EUROCOMB 2023
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Big Ramsey degrees contributing to finite structural Ramsey theory

1 Essentially all Ramsey classes follows from Nešetřil-Rödl’s partite construction
method.

2 Open problems in about small Ramsey degrees are all related to failure of its
essential part, the Partite Lemma.

1 Hyper-graphs omitting odd cycles up to given length.
2 (Hyper-)Graphs of large girth
3 Homogeneous hyper-tournaments
4 Finite groups
5 . . .

See list of open problems in:
M. Konečný: Model theory and extremal combinatorics, PhD thesis, 2023.
https://kam.mff.cuni.cz/~matej/

3 Upper bounds on Big Ramsey degrees can not apply partite construction.
They give new proofs of Ramsey classes too!

4 Proofs of upper bounds on big Ramsey degrees are more laborious, but also more
systematic. Tree of types is not visible to small Ramsey problems, but in a way still
present.

https://kam.mff.cuni.cz/~matej/
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M. Konečný: Model theory and extremal combinatorics, PhD thesis, 2023.
https://kam.mff.cuni.cz/~matej/

3 Upper bounds on Big Ramsey degrees can not apply partite construction.
They give new proofs of Ramsey classes too!

4 Proofs of upper bounds on big Ramsey degrees are more laborious, but also more
systematic. Tree of types is not visible to small Ramsey problems, but in a way still
present.

https://kam.mff.cuni.cz/~matej/


Simplified formulation for regularly branching trees

Definition (Boring extensions)

Given finite alphabet Σ, a family of boring extensions is a countable sequence E = (En)n∈ω of sets

En ⊆ {e is a function e : Σn → Σ}

satisfying the following two conditions:

1 Duplication:

For every m < n the set En contains a function en
m : Σn → Σ defined by:

en
m(a) = am for every a ∈ Σn.

2 Insertion: For every m ≤ n, e1 ∈ Em, e2 ∈ En there exists e3 ∈ En+1 such that for every a ∈ Σm

and b ∈ Σn−m the following is satisfied:

e3(a⌢e1(a)⌢b) = e2(a⌢b).
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Generalized embedding types

Definition (Interesting levels)

Given a finite alphabet Σ, a family of boring extensions E and a set X ⊆ Σ<ω we denote by IE(X )
the set of interesting levels of X . This is a set of all ℓ ∈ ω such that there is no eℓ ∈ Eℓ satisfying for
every a ∈ X , |a| ≥ ℓ

(a|ℓ)⌢eℓ(a|ℓ) ⊑ a.

0 1

00 01 10 11

000 001 010 011 100 101 110 111

Definition (Embedding type)

Given a finite alphabet Σ, a family of boring extensions E and a set X ⊆ Σ<ω we define the
embedding type of X , denoted τE(X ), to be the set of all words created from words in X by removing
all letters with indices not in IE(X ).
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Coloring subsets of a given embedding type

Given a finite alphabet Σ, a family of boring extensions E and sets X ,Y ⊆ Σ<ω we put(
Y

X/E

)
=
{

X ′ ⊆ Y : τE
(
X ′) = τE (X )

}
.

Theorem (BCDHKNZ 2023+, Colouring sets of given embedding type in a finite tree)

For every finite alphabet Σ, family of boring extensions E , positive integer r , finite set X ⊆ Σ<ω and
(possibly infinite) set Y ⊆ Σ<ω and every finite colouring χ of

(
Σ<ω

X/E

)
→ r there exists Y ′ ∈

(
Σ<ω

Y/E

)
such that χ is constant when restricted to

( Y ′

X/E

)
.

Theorem (BCDHKNZ 2023+, Colouring sets of given embedding type in a combinatorial cube)

For every finite alphabet Σ, family of boring extensions E , positive integers m, n, r and (finite) sets
X ⊆ Σm, Y ⊆ Σn there exists N ∈ ω such that for every r -colouring χ :

(
ΣN

X/E

)
→ r there exists

Y ′ ∈
(

ΣN

Y/E

)
such that χ is constant when restricted to

( Y ′

X/E

)
.



Abramson–Harrington theorem

Let L be a relational language. We consider standard model-theoretic L-structures.

If L contains binary symbol ≤ we call L-structure A ordered if (A,≤A) is a linear order.

Given L-structures A,B and C we write
(B

A

)
for the set of all embeddings A → B.

Definition (Partition arrow)

We write C −→ (B)A
2 for the following statement:

For every 2-coloring χ :
(C

A

)
→ {0, 1} there exists embedding f ∈

(C
B

)
such that χ restricted

to {f ◦ g : g ∈
(B

A

)
} is constant.

Theorem (Nešetřil 1977, Abramson–Harrington 1978)

Let L be a relational language and A,B finite ordered L-structures. Then there exists finite ordered
L-structure C satisfying C −→ (B)A

2 .



Abramson–Harrington theorem

Theorem (Nešetřil 1977, Abramson–Harrington 1978)

Let L be a relational language and A,B finite ordered L-structures. Then there exists finite ordered
L-structure C satisfying C −→ (B)A

2 .

Proof, step 1: associate vertices of structure B with words.

1 Fix A and B. WLOG assume that B = n = |B| and ≤B is the natural ordering of n.

2 Given two substructures B′ and B′′ of B we put B′ ≺ B′′ if either |B′| < |B′′| or |B′| = |B′′| and
B′ is lexicographically before B′′ (in the order of vertices of B).

3 Put p = 2n − 1 and enumerate all non-empty substructures of B as B0,B1, . . . ,Bp−1 in the
increasing order (given by ⪯). For each i < p

4 For each i < N find lexicographically first substructure Di isomorphic to Bi and denote by f i the
unique isomorphism Bi → Di .

φ(v)i =

{
−1 if v /∈ B i

f i(v) if v ∈ B i for every v ∈ B and i < p.

0 1 2 3 4 5 6
0 φ(0) = 0 n n 0 0 n 0
1 φ(1) = n 0 n 1 n 0 1
2 φ(2) = n n 0 n 2 1 2

B
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Theorem (Nešetřil 1977, Abramson–Harrington 1978)

Let L be a relational language and A,B finite ordered L-structures. Then there exists finite ordered
L-structure C satisfying C −→ (B)A

2 .

Proof, step 1: associate vertices of structure B with words.

1 Fix A and B. WLOG assume that B = n = |B| and ≤B is the natural ordering of n.

2 Given two substructures B′ and B′′ of B we put B′ ≺ B′′ if either |B′| < |B′′| or |B′| = |B′′| and
B′ is lexicographically before B′′ (in the order of vertices of B).

3 Put p = 2n − 1 and enumerate all non-empty substructures of B as B0,B1, . . . ,Bp−1 in the
increasing order (given by ⪯). For each i < p

4 For each i < N find lexicographically first substructure Di isomorphic to Bi and denote by f i the
unique isomorphism Bi → Di .

φ(v)i =

{
−1 if v /∈ B i

f i(v) if v ∈ B i for every v ∈ B and i < p.

0 1 2 3 4 5 6
0 φ(0) = 0 n n 0 0 n 0
1 φ(1) = n 0 n 1 n 0 1
2 φ(2) = n n 0 n 2 1 2

B



Abramson–Harrington theorem
0 1 2 3 4 5 6

0 φ(0) = 0 n n 0 0 n 0
1 φ(1) = n 0 n 1 n 0 1
2 φ(2) = n n 0 n 2 1 2

B

Proof, step 2: structure Cℓ on Σℓ.

Consider regularly branching tree (Σ<ω,⊑) with Σ = B ∪ {−1}.

Given k , ℓ ∈ ω, and a tuple w̄ = (w0,w1, . . . ,wk−1) of elements of Σℓ

1 we say that w̄ decides a structure on level i < ℓ if 0 ≤ w0
i < w1

i < · · · < wk−1
i and i is a minimal

with this property.

2 we say that w̄ become incompatible on level i ′ < ℓ if either

1 k = 2 and w0
i′ ≥ w1

i′ ≥ 0,
2 0 ≤ w0

i′ < w1
i′ < · · · < wk−1

i′ however there exists i < i ′ such that w̄ decides structure on
level i and B ↾{w0

i ,w
1
i ,...,w

k−1
i } is not isomorphic to B ↾{w0

i′ ,w
1
i′ ,...,w

k−1
i′ } .

For every ℓ ∈ ω construct an ordered L-structure Cℓ as a structure satisfying the following:

1 The vertex set of Cℓ is Cℓ = Σℓ,

2 ≤Cℓ
is the lexicographic ordering of Σℓ,

3 whenever (w0,w1, . . . ,wk−1) ∈ Σℓ is compatible and decides structure on some level i then
B ↾{w0,w1,...,wk−1} is isomorphic to B ↾{w0

i ,w
1
i ,...,w

k−1
i }.
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Abramson–Harrington theorem

Proof step 3: Building (S,M)-tree.

Define successors by concatenation.
Let M denote the set of all shape-preserving functions F : Σ<ω → Σ<ω satisfying for every ℓ ∈ ω
and every lexicographically increasing sequence w̄ of elements of Σℓ the following two properties:

1 if F (w̄) decides structure on level i then i ∈ F̃ [ω].

2 if F (w̄) become inconsistent on level i ′ then i ′ ∈ F̃ [ω].

Let N by given by our theorem for (S,M)-tree, 2|A| − 1 and 2|B| − 1. Then

Cℓ −→ (B)A
2 .

B

0 1 2
0 φ(0) = 0 n 0
1 φ(1) = n 0 1A

0 1 2 3 4 5 6
0 φ(0) = 0 n n 0 0 n 0
1 φ(1) = n 0 n 1 n 0 1
2 φ(2) = n n 0 n 2 1 2
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Open problems

1 Does the class of all finite structures omitting the following substructure have finite big Ramsey
degrees?

2 We know that Rado graph with finitely many types of edges has finite big Ramsey degrees.
Rado graph with infinitely many types of edges does not. Does the universal structure with an
equivalence relation on pairs of vertices have finite big Ramsey degrees?

3 If big Ramsey degrees are not finite, what is the best possible statement about them?

4 What are the precise big Ramsey degrees of random 3-uniform hypergraphs?

See list of open problems in:
M. Konečný: Model theory and extremal combinatorics, PhD thesis, 2023.
https://kam.mff.cuni.cz/~matej/

https://kam.mff.cuni.cz/~matej/
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