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The description of the dynamics of complex systems, in particular the capture of the interaction structure
and causal relationships between elements of the system, is one of the central questions of interdisciplinary
research. While the characterization of pairwise causal interactions is a relatively ripe field with established
theoretical concepts and the current focus is on technical issues of their efficient estimation, it turns out that the
standard concepts such as Granger causality or transfer entropy may not faithfully reflect possible synergies or
interactions of higher orders, phenomena highly relevant for many real-world complex systems. In this paper, we
propose a generalization and refinement of the information-theoretic approach to causal inference, enabling the
description of truly multivariate, rather than multiple pairwise, causal interactions, and moving thus from causal
networks to causal hypernetworks. In particular, while keeping the ability to control for mediating variables or
common causes, in case of purely synergistic interactions such as the exclusive disjunction, it ascribes the causal
role to the multivariate causal set but not to individual inputs, distinguishing it thus from the case of, e.g., two
additive univariate causes. We demonstrate this concept by application to illustrative theoretical examples as well
as a biophysically realistic simulation of biological neuronal dynamics recently reported to employ synergistic
computations.
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Introduction. The study of complex networks is a rapidly
developing field with applications across various scientific
disciplines such as neuroscience, climate research, computer
science, economics, energetics, or game theory [1]. The gen-
eral approach views a given system as a network of interacting
subsystems. A central challenge is to estimate the pattern of
interactions from observed data. The formal definition and
methods for estimating causal effects from one element to
another have been thoroughly studied.

A common approach is the Granger causality [2]—a con-
cept based on two principles: the cause happens before its
effect, and the cause carries some additional information
about the effect (not included in the "rest of the universe").
A nonlinear generalization of this concept—transfer en-
tropy [3,4]—is based on the same principles. While Granger
causality is typically cast in the framework based on pre-
diction via linear vector autoregressive processes, transfer
entropy is an information-theoretic measure aiming to cap-
ture time-directed information transfer of arbitrary functional
form. Indeed, for Gaussian processes, the two concepts are
equivalent [5].

*Contact author: hlinka@cs.cas.cz

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

In this work, we are proposing an extension to the frame-
work of Granger causality (seen as reduction in variance)
or transfer entropy (seen as reduction in surprise). To un-
derstand the nature and motivation of the extension, it is
elucidating to start by conceptualizing Granger causality as a
fundamental refinement of the notoriously naive concept of
causality as correlation by adding the requirement of the can-
didate cause holding correlation (prediction/information) on
top of that included in the target past and the rest of the uni-
verse. Note that analogously transfer entropy is a refinement
of mutual information by conditioning on target past (and po-
tentially other sources). This key refinement allows ascribing
the causal effect more conservatively, in particular controlling
for common sources or mediating variables, however, is not
free of interpretation problems. To alleviate these, we suggest
yet another refinement that would in particular avoid ascrib-
ing causal status to variables, that only contribute through
multivariate interactions. We aim to do this while keeping
the original safeguards (against false causal inferences) of
Granger’s approach.

Let us consider a pristine example of purely higher order
interaction between source variables in causing the target

variables: two candidate source variables X1, X2
iid∼ Be(0.5),

i.e., independent, each with a uniform Bernoulli distribution
with probability p = 0.5; and a target variable Y defined as
Y = XOR (X1, X2), or in the context of time series Y (t + 1) =
XOR(X1(t ), X2(t )). Note that logical XOR is zero if the inputs
are equal; otherwise, it is one. In this system, pairwise mutual
information I (X1,Y ) between X1 and Y is equal to zero, and
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so is I (X2,Y ). In other words, neither of the candidate source
variables carries (on their own) information about the target
variable Y ; they play a role, but only together. Nevertheless
transfer entropy ascribes causal status to both X1 and X2 (by
conditioning each one on the other). One may, however, argue
that such representation by a graph with the causal links (from
X1 to Y and from X2 to Y ) is obfuscating something important,
as it does not distinguish this system from, say, Y = X1 + X2,
where each variable indeed carries information about Y on its
own. We suggest a refinement in interpreting the relationship
between X1 (or X2) and Y : they are, in fact, independent, and
thus it may not be appropriate to discuss a direct causal effect
in this context. At the same time, representing the system by
an empty graph and denying causal status to both variables
seems incorrect as well, as that would collide with the case
of completely unpredictable Y . Thus, as only the multivariate
information I ({X1, X2},Y ) is nonzero (in particular 1 bit), we
suggest to state that there is no causal link, but there is a
causal hyperlink from the set {X1, X2} to Y . Consequently,
this perspective necessitates a shift from representing the
system using directed graphs to employing directed causal
hypergraphs. Note that directed hypergraph is a natural gener-
alization of a directed graph, and corresponds to a pair (V, E ),
where V is a set of elements called nodes and E is a set of
pairs of subsets of V . Each of these pairs (D,C) ∈ E is called
a hyperedge; the vertex subset D is known as its tail, and C as
its head. Less formally one can speak of hypernetworks with
hyperlinks between (sets of) nodes, in a causal context from
sources to targets. However, note that interpreting the graph-
theoretical properties of “networks” inferred from statistical
dependencies is in many situations problematic and generally
a challenging enterprise; see [6] as an example.

While the XOR function may seem artificial, higher-order
interactions are commonly discussed in the context of mod-
eling complex systems in physics [7], neuroscience [8,9],
ecology [10], social sciences [11], and many more. Despite
this challenge being increasingly recognized in the causal
inference community [12–14], formal refinement of multivari-
ate causality is not yet fully resolved.

Transfer entropy and problem statement. In the following,
we assume that for each target variable Y , a set of candi-
date source variables X = {X1, . . . , Xn} is known a priori. In
practice, the assumption is justified either by Granger causal-
itylike reasoning—the candidate source variables are those
temporally preceding the target variable—or by (additional)
theoretical arguments. The transfer entropy (the positivity of
which defines the presence of causal effect from Xi to Y ) is
defined as the conditional mutual information between Xi and
Y conditioned on all other potential sources:

TEXi→Y = I (Xi,Y |X \ {Xi}). (1)

As already mentioned, we aim to generalize the transfer
entropy concept to more faithfully represent causal structure
in the presence of higher-order causal interactions. A natural
generalization is to define existence of a causal effect of a set
XI = {Xi1 , . . . , Xik } on target Y as

I
({

Xi1 , . . . , Xik

}
,Y |X \ {

Xi1 , . . . , Xik

})
> 0. (2)

Let us revisit the TE behavior in the XOR example:

X1, X2
iid∼ Be(0.5)

Y = XOR(X1, X2). (3)

What would such generalization of TE conclude? First, it
infers a causal link from the set {X1, X2}: I ({X1, X2},Y ) =
1 bit. However, it also infers causal link from X1 (or X2) as

I (X1,Y |X2) = I ({X1, X2},Y ) − I (X2,Y ) = 1 bit. (4)

As a side note, in practice, these individual links might
remain undetected, as commonly used causal network infer-
ence algorithms progress iteratively from testing univariate
predictors and may stop before discovering such conditional
dependence—see [13] for discussion, and [14] for an exam-
ple of an updated (yet, therefore, slower) algorithm more
robust in this regard. Also note that the XOR example is
straightforwardly generalizable to the k-variable higher or-
der interaction by considering, e.g., Y as a sum of variables

X1, X2, . . . , Xk−1
iid∼ Be(0.5) modulo 2, i.e., the parity func-

tion. Again, even the knowledge of all but one of the source
variables provides no information about Y without knowing
the last one; it is the interaction of all k − 1 sources that
provides the target predictability.

Setting aside the implementation details, even such mul-
tivariate TE definition does not distinguish the distinctive
synergistic causal effect in the XOR example, compared to,
e.g., the case of summing two independent normally dis-
tributed variables. Two issues arise: first, that TE concludes
that X1 has a "causal effect" on Y although X1 does not hold
any information about Y, might be considered superfluous,
as the information "belongs" to the pair (which multivariate
TE correctly marks). Second, for the sum function, as the
pair does not carry information on top of each variable, one
might not want to mark the pair as causal per se, but only each
variable.

Causal effect. The first issue suggests the suitability of
including an extra condition (of nonzero mutual information
between the source and the target) in the definition of a causal
effect. Indeed, mutual information alone cannot be considered
a measure of any causality since it could only mean that
variables are affected by a common source, however, it makes
good sense to consider it as an additional necessary condition
of a (direct) causal effect. Such a necessary condition would
solve the problem with the abovementioned example (3), but
the situation can be much more complicated. Consider the

following system: X1, . . . , Xp, Ep+1, . . . , En
iid∼ Be(0.5),

Xk = X1 + Ek, k ∈ {p + 1, . . . , n}

Y =
p∑

k=2

XOR(X1, Xk ) +
n∑

k=p+1

Xk . (5)

The system is constructed (see Fig. 1) such that X1 does
not directly affect Y by itself, but it affects Y indirectly
through mediating variables Xp+1, . . . , Xn. Also, X1 affects
Y through pairwise interactions: each pair {X1, Xi} for i ∈
{2, . . . , p} affects Y . Note that both the mutual information
I (X1,Y ) and the fully conditional mutual information (trans-
fer entropy) I ((X1,Y )|X \ {X1}) are greater than zero, thus
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FIG. 1. Example system (5) illustrating that careful conditioning
is necessary to uncover that X1 has only mediated and joint multi-
variate causal effects on Y . Linear terms are represented by oriented
edges from a source element to the target element (the element on
the left-hand side of the equation), while XOR terms are represented
by oriented (hyper)edges from a pair of source elements to the target
element.

suggesting a causal effect of X1 on Y . In fact, all of the con-
ditional mutual informations I (X1,Y |S) are positive, except
I (X1,Y |Xp+1, . . . , Xn).

Indeed, if any of variables {X2, . . . , Xp} is in the con-
dition, the information is nonzero because of the effect of
the predictor {X1, Xi} [follows from chain rule, Eq. (4)]. On
the other hand, if any of variables {Xp+1, . . . , Xn} is missing
in the condition, information is nonzero because they are
mediators of X1 and Y (information flows indirectly from X1

to Y through them). Thus, we suggest to define a causal effect
as follows.

Definition (unaccountable causal effect and optimally con-
ditioned causal entropy). Let X = {X1, . . . , Xn} be a set of
candidate source variables and Y a target variable. There is
a causal effect from set XI = {Xi1 , . . . , Xik } to Y if and only if

I
({

Xi1 , . . . , Xik

}
,Y |S)

> 0 (6)

for all S ⊆ X \ {Xi1 , . . . , Xik }.
The optimally conditioned transfer entropy is given as

OCTEXI →Y = min
S⊆X\XI

I (XI ,Y |S). (7)

In words, the causal effect is the minimum information
a variable carries about a target, across conditioning it by
all possible subsets of the "rest of the universe"—instead of
considering only exactly the "rest of the universe" in the con-
dition. Informally, a variable is only considered truly causal
if it can not be conditioned out, whichever subset of other
variables we choose.

Notably, the definition of the causal effect of a set of vari-
ables typically enforces the causal influence of an arbitrary set
containing a variable with a causal effect. Consider, for exam-
ple, a simple linear system where the variable Y is causally
affected just by variable X1 plus some noise: Y = X1 + EY ,
and in the system, there are also other variables {X2, . . . , Xn}
independent on Y and X1. Then, all sets containing X1 are
also causally affecting Y . Note that similar behavior (supersets
of causes defined as causes irrespective of further value in
prediction) also holds for (a multivariate variant of) transfer
entropy. In other words, although the definition of causal ef-
fect avoids attributing higher-order causal effects to individual
variables, it still does not by itself distinguish multivariate

TABLE I. Example information-theoretical functionals for a
triplet of variables coupled by the function XOR(X1, X2), where
X1 and X2 are independent random variables with distributions a)
pA X1, X2 ∼ Be(0.5), b) pB X1 ∼ Be(0.5), X2 ∼ Be(0.8) c) pC X1 ∼
Be(0.7), X2 ∼ Be(0.8). Note that the presence of non-zero (condi-
tional) information values depends not only on the coupling function,
but substantially on the input variable distributions, even under inde-
pendence of inputs.

a) b) c)

p(X1 = 0, X2 = 0,Y = 0) 0.25 0.10 0.06
p(X1 = 0, X2 = 1,Y = 1) 0.25 0.40 0.24
p(X1 = 1, X2 = 0,Y = 1) 0.25 0.10 0.14
p(X1 = 1, X2 = 1,Y = 0) 0.25 0.40 0.56
I (X1,Y ) 0.00 0.28 0.24
I (X2,Y ) 0.00 0.00 0.08
I (X1,Y |X2) 1.00 1.00 0.88
I (X2,Y |X1) 1.00 0.72 0.72
I ({X1, X2},Y ) 1.00 1.00 0.96

causes that are trivial in the sense of inherited from its subsets
from nontrivial higher-order multivariate causal effects.

We suggest one may add this distinction of a unique higher-
order causal effect by interpreting differently the observation
of multivariate causes in the presence/absence of the causal
effects of the subsets. Further, to distinguish purely additive
from synergistic multivariate causality, one may quantify the
higher order causal information not induced trivially by the
subsets; suitable approaches may include maximum entropy
definition of higher order interactions [8,15], or partial infor-
mation decomposition (PID) [16]. The relationship between
OCTE and PID is inherently close but nontrivial. For three
variables, PID can be constructed using OCTE: the unique
information of an individual variable can be defined as its
OCTE, while the redundancy and synergy elements are de-
rived from the multivariate information. This construction
satisfies the axioms of PID. However, a more natural ap-
proach, defining unique information and synergy directly as
OCTE (with synergy corresponding to the OCTE of the set
of source variables), fails to meet the PID axioms. A more
sophisticated approach to PID, incorporating the strategy of
powerset minimization as utilized in the analysis of how en-
vironmental factors influence transfer entropy between two
variables, was recently proposed in [17].

Returning to the XOR example, note that the resulting
causal graph of the system also depends on the distribution of
the variables X1 and X2. Consider three different distributions,
see Table I. In all cases pA, pB, pC , X1 and X2 are independent
variables with Bernoulli distribution.

We have already discussed the case A with uniformly dis-
tributed probabilities. In case B, X1 is uniformly distributed,
but X2 ∼ Be(0.8). While I (X2,Y ) remains zero, I (X1,Y ) is
positive, as is I (X1,Y |X2). Variable X1 thus has a causal effect
on Y only due to the change in the distribution X2. The further
the variable X2 deviates from the uniform distribution, the
more information X1 has about Y and the unique contribution
of the pair {X1, X2} decreases. In case C, where both variables
deviate from the uniform distribution, both X1 and X2 have a
causal effect on Y , and they also have a unique contribution as
a pair {X1, X2}.
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It is worth mentioning that a similar challenge in defining
causal effects, as seen in examples such as the XOR function,
also arises in Pearl’s approach to causality [18]. Pearl’s to-
tal effect of a variable X on an outcome Y is defined as a
difference in the probability distribution of Y when X is ma-
nipulated versus when X is observed naturally. Specifically,
the total effect is determined by comparing the probabilities
P(Yx = y) and P(Y = y). Here, P(Yx = y) denotes the proba-
bility that Y takes the value y after an intervention on X (i.e.,
when X is set to a specific value), while P(Y = y) represents
the probability that Y takes the value y under unperturbed,
observational conditions (without any intervention on X ). If
P(Yx = y) �= P(Y = y), this inequality indicates that the in-
tervention on X has caused a shift in the distribution of Y ,
suggesting the existence of a total causal effect.

Further, the direct causal effect of X on Y , holding other
variables Z constant, is defined as the difference P(Yxz = y) −
P(Yx∗z = y), where Yxz represents the outcome after both X
and Z are set to specific values (X = x and Z = z), and Yx∗z
represents the outcome after X is set to x∗ (different from x)
while Z are set equal to the previous case (Z = z) [19]. This
definition aims to isolate the direct effect of X on Y , removing
the influence of other variables.

When applying the concept of total causal effect to
the example Y = XOR(X, Z ), we observe that P(Yx = y) =
Be(0.5) = P(Y = y) for any value of x, interpreted as the
absence of total causal effect of X on Y . However, Yx=0,z=0 = 0
and Yx=1,z=0 = 1, therefore indicating a direct effect of X
on Y .

The absence of total causal effect in the presence of a direct
causal effect appears contradictory and difficult to interpret.
However, we propose one can apply the same strategy as in the
case of transfer entropy, in particular by redefining a variable
as having a direct causal effect if and only if its perturbations
affect the distribution irrespective of which subset of the other
system variables is kept fixed.

Dendritic computation of XOR. Higher order (synergistic)
dependencies occur in systems across disciplines, such as
computer science or neuroscience. For instance, XOR based
detectors are frequently used in algorithmic image edge detec-
tion [20,21]. For each pixel, the logical XOR mask is applied to
a pair of adjacent pixels, and positive XOR value marks an edge
in the picture. A similar processing principle can be found
in some retinal ganglion cells, which respond to differences
in intensity across the receptive field while ignoring spatially
uniform input and make those neurons well posited to detect
edges in visual images [22].

We further focus more closely on another example of
higher order causal interactions in neuronal dynamics. Despite
the long-standing assumption that computing logical XOR re-
quires a circuit of connected neurons, recent work showed
that calcium mediated dendritic action potentials (dCaAPs)
in a single human cortical neuron can compute this function
[23]. In essence, this computation is provided by anticoin-
cidence behavior on the apical dendrite of the pyramidal
neuron, where two simultaneous synaptic inputs surprisingly
reduce dCaAP amplitude (in contrast to the traditional am-
plification of dendritic AP). We use the biophysical model
of dCaAPs provided by [23], simulating its dynamics while
dynamically modulating the synaptic inputs coming from two

FIG. 2. Membrane voltage at the dendritic site of the dCaAP
mechanism. Top: Dynamics of four logical configurations. In each
panel, the system receives stable synaptic input for 4 s from two
distinct synaptic pathways [X1, X2], the associated logical values
shown in labels at the bottom. Unequal input ([0,1] or [1,0]) causes
large dendritic spikes. Coincident activity in both pathways ([1,1])
shows as depolarized compared to inactive pathways ([0,0]) but will
not make the neuron fire. Bottom. Altering input for each 250 ms
window.

distinct sources, the activity of which corresponded to two
parallel sequentially generated logical inputs, where low/high
synaptic input represented logical value of 0/1, respectively.
The resulting activity at the apical dendrite ("XOR gate") is
shown in Fig. 2.

FIG. 3. Example of membrane voltage on the apical dendrite and
soma of the neuron. Top: membrane potential at the dendritic site of
dCaAP mechanism (as in Fig. 2). Bottom: membrane voltage at the
soma of the neuron. Left: distant case. dCaAP mechanism is located
550 µm from the soma (corresponds to [23], Fig. 3). Right: proximal
case. dCaAP mechanism is located 287 µm from the soma (corre-
sponds to [23], Fig. S9). For model details, see the code deposition
in modelDB [24].
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FIG. 4. Distribution of output variables Y , Ỹ , and Z̃ depend-
ing on input configuration [X1, X2]. Left: distribution on the apical
dendrite—distant case. Middle/right: distribution on the apical
dendrite/soma—proximal case.

Following [23], we consider two settings: in setting 1, the
location of the dCaAP mechanism on the dendrite is distant
from the soma (Fig. 3, left), and in setting 2 the location is
closer, thereby allowing some of the large dendritic spikes to
trigger somatic spikes (Fig. 3, right).

The simulated 100 seconds were divided into 250 ms
windows. Then we binarized to the apical dendrite voltages
(Fig. 3, top) to obtain the target variable Y (Ỹ for setting 2): we
assigned a value of one to the Y if a spiking rate in the window
is above 10 Hz, and zero otherwise (spike was defined as the
membrane voltage exceeding 0 mV).

Figure 4 shows the measured distribution of the output
variables. The distribution in all three cases follows XOR

distribution, albeit for the somatic compartment, it is less
accurate due to noisy transmission from the dendrite.

To determine causal relationships, the (conditional) mutual
information between the input variables (X1, X2, and {X1, X2})
and the target variable Y was evaluated. As the finite sample
estimate of mutual information is generally nonzero, even for
independent variables, a statistical test is required. To evaluate
the null hypothesis I (XI ,Y |S) = 0 at significance level θ =
0.01, we use a permutation test [using N = 1000 realizations
of shuffled source variable(s) XI to generate the null distribu-
tion]. This breaks any dependency (pairwise or multivariate)
between XI and Y while maintaining dependencies between Y
and S.

For setting 1, we infer both I (X1,Y ) = 0 and I (X2,Y ) = 0,
while I ({X1, X2},Y ) = 0.46; thus, we conclude by the defi-
nition of causality (6) there is no causal influence from X1

or X2, but there is a causal (hyper)link from {X1, X2} to Y
with a causal strength of OCT E{X1,X2}→Y = 0.46. For setting
2, we get the same causal structure between the synaptic
input and activity on apical dendrite with a causal strength
of OCT E{X1,X2}→Ỹ = 0.56.

We can further evaluate the mediating role of the api-
cal dendrite on the somatic spiking in setting 2. We add

X1 X2

Y

Z

Y

Z (Z)

X1

XOR

~

Y~

X2

~

~

X2XX

FIG. 5. Left: scheme of pyramidal neuron. X1 and X2 mark two
distinct synaptic pathways (inputs), Y the output of the dCaAP mech-
anism on the apical dendrite (Ỹ for setting 2), Z (Z̃ ) the neuron soma.
Right: corresponding causal diagram.

the variable Z̃ representing somatic spiking to the moni-
tored system (see right bottom corner of the Fig. 3). The set
of potential sources for target variable Z̃ are all subsets of
{X1, X2,Y }. We obtain I (X1, Z̃ ) = 0, I (X2, Z̃ ) = 0, thus nei-
ther X1 nor X2 are causal parents. Although I ({X1, X2}, Z̃ ) �=
0, the predictor {X1, X2} is not a causal parent of Z̃ because
I ({X1, X2}, Z̃|Ỹ ) = 0. In this case, all information is mediated
by Ỹ , thus the link from {X1, X2} to Z̃ is indirect. The only
nontrivial causal parent of the Z̃ variable is Ỹ with causal
strength OCT EỸ →Z̃ = 0.04 (as discussed, all the supersets of
Ỹ also are causal parents of Z̃ , however, as here they carry
no extra information, being thus a purely formal, rather than
unique, multivariate cause). The estimated causal scheme, a
sketch of the neuron, is shown in Fig. 5.

Conclusions. We studied the problem of defining the causal
effect in systems exhibiting higher-order causal patterns such
as XOR-like interactions. We showed that the traditional ap-
proaches do not provide a sufficiently refined answer. We
tackle this challenge by introducing a new, refined definition
of causal structure and discuss its relation to the original
definition. A tradeoff for the increased expressiveness of the
causal hypernetwork definition is its exponential complexity
due to formally requiring iteration over a powerset in the
condition. This calls for iterative approximation algorithms
already commonly utilized for transfer entropy estimation.
The main theoretical challenge lies then in treating conve-
niently the cases of combined synergistic and direct, or even
mediating, causal effect.
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