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This article presents a stochastic model of binaural hearing in the medial superior olive
(MSO) circuit. This model is a variant of the slope encoding models. First, a general
framework is developed describing the elementary neural operations realized on spike
trains in individual parts of the circuit and how the neurons converging onto the MSO
are connected. Random delay, coincidence detection of spikes, divergence and
convergence of spike trains are operations implemented by the following modules: spike
generator, jitter generator, and coincidence detector. Subsequent processing of spike
trains computes the sound azimuth in the circuit. The circuit parameters that influence
efficiency of slope encoding are studied. In order to measure the overall circuit performance
the concept of an ideal observer is used instead of a detailed model of higher relays in the
auditory pathway. This makes it possible to bridge the gap between psychophysical
observations in humans and recordings taken of small rodents. Most of the results are
obtained through numerical simulations of the model.

© 2011 Elsevier B.V. All rights reserved.
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1. Introduction

A model of the mammalian MSO circuit which localizes the
direction of the sound source in the horizontal plane (azimuth)
at low frequency range is presented here. This model is based
upon the interpolation of the direction in question using the
firing rate code of the MSO binaural neurons. This is proposed
as an alternative mechanism for low frequency sound locali-
zation in mammals, as the precise mechanism in mammals
is not known to date (Dean et al., 2008; Joris et al., 1998, 2006;
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Karino et al., 2011). The interpolation model differs from the
model proposing an array of delay lines (Jeffress, 1948). In the Jef-
fressmodel, the sound direction is encoded using a spatial code
which includes the position of peak neural activity within the
array. In the interpolation model, the binaural neuron encodes
the sound direction using its firing rate. Firing of this neuron
constitutes the ITD (interaural time difference) curve. The
sound direction is read out by interpolation from this curve.

McAlpine et al. (2001), Brand et al. (2002), Grothe (2003) and
others have proposed an ITD readout mechanism which en-
f the Czech Republic, Videnska 1083, 142 20, Praha 4, Czech Republic.
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codes the sound direction through the maximal slope of the
response function. This function has the ITD as its argument
and the firing rate as its output. In line with the terminology
used previously, we can call this mechanism slope encoding.
Our interpolation model is a variant of this slope encoding
mechanism. One of the crucial experimental findings is that
abolishing of inhibitory inputs by strychnine moves the max-
imum slope out of the operational range (Brand et al., 2002).
Based on this observation, the slope encoding model has, as
one of its key elements, an inhibitory input to the MSO.

Our model reproduces the MSO computations at the level
of abstract neural circuit description. Biophysical interactions
of the excitatory and inhibitory postsynaptic potentials (EPSPs
and IPSPs) at the postsynaptic membrane are not modeled in
detail. Concerning the interaction of the IPSP with the EPSP,
their time order is important. The IPSP must precede the
EPSP to exceed the threshold (Grothe, 2003; Pecka et al.,
2008). The PSPs from the two sides have to meet within a
given coincidence detection time window. The window size
is one of the key parameters in our model. We stress this as-
pect of the model because the rise and decay time constants
of postsynaptic voltage dependent currents determine the co-
incidence detection window size. The subcellular details are
Fig. 1 – Schemes of the MSO circuit anatomy and the interpolatio
binaural circuit (only one half of the symmetrical circuit is show
from the auditory periphery to the auditory center is oriented to
(expanded in the left-hand column). Synapses are either excitato
neural circuit simplifications without losing the implementation
abstracted in this paper. In vitro experiments conducted in
the search for the subcellular mechanism responsible for the
sub-millisecond precision show the plurality of underlying
biophysical mechanisms. To name only two of these one par-
ticular mechanism which contributes to setting the duration
of the coincidence detection window is implemented by the
voltage-activated potassium current at the postsynaptic
membrane (Mathews et al., 2010). Another mechanism by
which the order of the IPSP and EPSP is distinguished is the
post-inhibitory rebound mechanism (Brand et al., 2002).

We alsouse the ergodic assumptionof indistinguishable time
andpopulation ensemble encoding of the signals by spike trains.
The ergodic assumption in physics was originally introduced in
statistical mechanics of gases by Boltzmann in the nineteenth
century. According to this assumption the average of a selected
quantity is the same for the time average and for the statistical
ensemble average (Papoulis, 1991). In other words, it assumes
that the same result is obtained when observing a process over
a long period of time as when sampling a given number of
shorter independent realizations of the same process. This ap-
proach is applied in the neural coding description as follows.
To receive information about the sound source direction, one
can either wait for a given period of time and measure all the
n model. The anatomical scheme (left) shows branches of the
n). L1, L2,…, R1, R2 are left and right neurons. The direction
p-down. Each neuron is denoted by its nucleus abbreviation
ry (E) or inhibitory (I). The model scheme (right) employs
of the key mechanisms.
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spikes in that period on an individual neuron, or one can observe
a given number of neurons over a shorter time period and
achieve the same precision. The number of spikes required for
such a measurement was estimated using the Bernoulli process
statistical model in Marsalek and Lansky (2005).

We propose a simple model where the basic processing
stages of the neural circuit have been replaced by four modules
operating in succession (see Fig. 1): a spike generator that repre-
sents the input from the auditory nerve (AN), a jitter generator
that adds jitter and delays, occurring in the pathway up to the
MSO, a coincidence detector that represents the first binaural
neuron in the MSO, and an ideal observer module. The detailed
description of these modules can be found in Section 4.
2. Results

2.1. Effects of inhibition

For the basic set of parameters (see Table 1), we obtained the
ITD curve shown in Fig. 2. It was checked that disabling the
asymmetric rule in the coincidence detector affects the output
of the circuit. We consider this to be our counterpart of inhibi-
tion suppression in the physiological model (see Section 2.3).
The result was as expected: in the purely excitatory case, i.e.,
with no inhibition, there is a higher firing frequency and, due
to the symmetric processing of excitatory spikes, the curve
peaks at DITD=0. In all other simulationswe used the asymmet-
ric coincidence detection rule only.

2.2. Effects of varying time parameters

After testing the basic parameter set, let us move to exploring
the parameter space, beginning with the timing jitter and
input sound frequency. When the ITD curves for increasing
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Fig. 2 – ITD curves for the basic set of parameters. This shows
a detailed view of the peak with inhibition shifted out of
the point, where DITD=0 as compared to the peak without
inhibition. The relative distances of the two curves (30–50 Hz)
are given in Grothe (2003). Further, the EE interaction has a
higher maximum firing rate than the EI interaction. The
basic ITD curve has shift of 0.25 ms, which is an emergent
property with no free parameter tuning.
input frequency fin are generated, it can be observed that the
firing rate grows and the ITD curve changes from flat in
lower frequencies to steep in higher frequencies (Fig. 3, left).
Similar rise of the firing rate with rising input frequency is ob-
served with the use of more detailed Meddis model, with
markedly lower output firing rates (Fig. 3, right). Furthermore,
the distance between the ITD peaks becomes smaller with in-
creasing fin as the input sound period decreases. The curve off-
set around the DITD=0 does not shift while changing fin.

As jitter decreases, the firing rate in the ITD curves in-
creases accordingly. See Fig. 4, right. This is due to the fact
that the smaller jitter helps spikes to occur in the same coin-
cidence window. For TJ→0, we would obtain a rectangular
pulse, which is unusable for interpolation. If the jitter be-
comes larger than the sound period, this would render the re-
sponse flat (not shown, effects of higher jitter values on ITD
curve are thoroughly demonstrated by simulations in Supple-
mentary information). Thus, the feasible jitter values are
bounded on both sides. Changes in jitter TJ values in the jitter
generator do not affect the ITD curve shift.

2.2.1. Window width and ITD curve shift
The ITD curve shift in ourmodel is produced by the asymmetric
coincidence rule but its particular size is affected by the param-
eters of the circuit. Therefore each parameter of our circuit was
studied to determine which parameters influence the ITD peak
shift. As a result of the simulations, it was possible to observe
that the parameter that changes the peak shift considerably is
the coincidence detection window width wCD. See Fig. 4. Other
parameters of our model did not affect the peak shift signifi-
cantly. See vertical lines in Figs. 3, 4.

2.3. Ideal observer

The ideal observer module is connected to the output of the
coincidence detector. For interpolation from the firing rate
back to the DITD value a previously fitted ITD function is
used. The ITD readout slope can be fitted to a sine function:
y ¼ 1

2A 1þ sin Btþ Cð Þ þ Dð Þ; where A is the multiplicative con-
stant setting up the maximum firing rate, B is dependent on
the input frequency, C is the phase shift and D is the sponta-
neous activity. See Fig. 5.

The shape of this function used for interpolation deter-
mines how precise the computation of DITD encoded in the in-
coming spike train is. As shown in previous sections, two
features are important. The first feature is the unambiguous
assignment of the unique DITD value from the firing rate. It is
the asymmetric rule together with wCD that plays an important
role in determining the readout curve whose fit is shown in
Fig. 5. The second feature is the slope of the interpolation curve
obtained as the difference ΔITD=ΔDITD/Δt and output range of
the ITD curve. Both are decisive for accuracy (or speed) of ITD es-
timate by the observer. As the output range increases, we obtain
a more precise azimuth estimate, which is influenced by all the
parameters, with jitter TJ being the main factor, as shown above.

2.3.1. Asymptotic times
Up to now we have looked only at the circuit output in the
terms of the firing rate. At the end, the information contained
in the output spike train is used in higher stages of the
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Fig. 3 – ITD response curves for different input frequencies fin directly delivered to the circuit (left-hand panel) and delivered
through the Meddis model (right-hand panel). For increasing the sound frequencies with step

ffiffiffi
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p

(50, 71, 100, 141, 200, 283 Hz),
the maximum firing also increases. In both cases, the period of the ITD curve decreases as the input frequency increases. If
cochlear filtering is used, it can be seen that the width of a single peak increases as the input frequency decreases. Secondly,
the output firing is approximately ten times lower with the Meddis model involved. For each sound frequency shown, the
Meddis model was used with the same characteristic frequency. For cut-off frequencies see Supplementary information.
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auditory pathway to estimate the azimuth. Since we do not
model higher stages of auditory processing, we use the ob-
server module, which sequentially collects information from
the circuit output and predicts resulting ITD from the infor-
mation given. Naturally, the longer the spike train is mea-
sured for, the more accurate the estimate of the source's
DITD which can be assessed. Thus in order to investigate the
overall estimate performance of our model circuit, we fed it
with a longer input and estimated the time TA needed for
the ideal observer to achieve accuracy 4°, in the head-on di-
rection (Mills, 1972). Fig. 6 shows fast asymptotic convergence
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Fig. 4 – Dependence of ITD peak shift on the coincidence detectio
jitter TJ (right-hand panel). Peaks do not exceed 140 Hz due to the
the left-hand panel a shift of the peak towards higher ITDs can b
(with step 300 μs). The two top left intervals show physiological
(600 μs), respectively. From around wCD=0.6 ms, and above that
the ITD function in physiologically relevant range does not chan
observation see the Discussion section. Right-hand panel: larger
The presence of high jitter values renders the response curve flat
towards zero.
towards the source DITD value when basic jitter value (TJ=1
ms) is applied (left), and a comparison of the asymptotic
times for different parameter sets (right). In all cases shown
here we set DITD=0. A comparison between a pure tone and
a noisy input produced by the Meddis model was added to
the Supplementary information.

The time to reach the asymptotic values TA, which range
from 0.5 s up to 5 s (see Fig. 6), would be too long compared
to the typical reaction time. The humanminimum integration
time is discussed in Middlebrooks and Green (1991) as a range
of values: while a stimulus of 50 ms duration is detected with
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n window width wCD (left-hand panel) and different values of
input frequency fin=140 Hz in the basic set of parameters. In

e seen as the window size increases from 60 μs towards 2 ms
ly relevant range in a domestic cat (300 μs) and in a human
value, the maximum slope is observed and the shape of
ge. For further notes about physiological relevance of this
jitter causes lower output dynamic range and wider curves.
. The response increases as the magnitude of jitter decreases
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Fig. 5 – The interpolation ITD curve in the physiologically
relevant range of values. The ITD curve is shown together
with the fitted sinus function used for interpolation in the
ideal observer. This function is fixed for the set of parameters
which would correspond to the fixed tuning of the neural
circuit for selected input signals. In this example, we used
the ITD curve, which results from simulation of the circuit for
the basic set of parameters. Note that the period of this slope
corresponds to the fundamental sound period.
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errors, typical azimuth integration time ranges from 150 to
300 ms of sound duration. However, the pathway from the
AN to the MSO is highly parallel and consists of up to a few
hundred neurons. When the ergodic hypothesis is used, as dis-
cussed in Section 3.4, TA can be divided by the number of neu-
rons. The time thus obtained corresponds to the theoretical
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the mean value obtained for 1000 simulation runs, while the dotte
lines show DITD original source and margins of azimuth difference
mean convergence when using larger jitter (TJ=5ms), the middle l
window (wCD=3ms), which is different from the basic parameter s
set of parameters (TJ=1ms). The horizontal lines show the precisio
time TA (TA=0.65 s for basic set of parameters) when the mean val
obtained for ourmodel to be able to report the azimuthwith averag
minimum time required by human listeners to determine the
DITD, when the entire brainstem circuit is working in parallel
and cooperating on the ITD estimation. When the basic set of
parameters is usedwe obtain that approximately 4 parallel neu-
ronswould be needed in order to achieve the 150 ms integration
time.
3. Discussion

3.1. Type of neuronal coding

Jeffress (1948) proposed a theory of how sound is localized by
a particular neural circuit. According to this concept, neural
representation divides the whole azimuthal space into dis-
tinct sections. Each section is handled by a specific neuron
and the fact that the sound originates from a given direction
is represented by higher firing activity of the corresponding
neuron. Jeffress suggested that this circuit is anatomically re-
alized by an array of delay lines. Indeed, experimental evi-
dence supporting this hypothesis was later found in the
circuit of the nucleus laminaris of birds by Carr and Konishi
(1988).

The responses of higher nuclei such as the colliculus inferior
in both birds,Wagner et al. (1987, 2007) andmammals, Joris et al.
(1998, 2006) have been systematically studied until recently.
This is because the colliculus inferior is more accessible to re-
cordings and its binaural response is analogous to that of the
nucleus laminaris or the MSO, respectively. In the MSO, which
is a mammalian anatomical counterpart of the avian circuit,
there is little supporting evidence for the existence of a structure
similar to such an array of delay lines, Grothe (2003), but see also
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Joris et al. (1998). This raises the question ofwhether such a type
of neural coding is also to be found in the mammalian brain
stem. Various alternatives have been proposed, for example,
delays of the cochlear traveling wave (Jennings and Colburn,
2010; Joris et al., 2006; Shamma et al., 1989). Previous experi-
ments have shown that ITD peaks occur out of the relevant
physiological range (McAlpine et al., 2001) and further reproduc-
tions of mammalian experiments similar to those have led to
the development of a theory showing that the mammalian lo-
calization mechanism is different from that of the avian. The
importance of the role of synaptic inhibition was also experi-
mentally discovered by Brand et al. (2002). The shift of the ITD
curve peak is somewhat counter-intuitive when we assume
that the Jeffress model is employed, and thus the slope (rate)
coding model has been proposed instead. In this paper a circuit
based on the slope coding scheme is studied.

3.2. Asymmetric rule for coincidence detection

The excitatory and inhibitory effects in the sound localization
circuit have been extensively discussed in experimental liter-
ature. Classical electrophysiological works by Goldberg and
Brown (1969) and others have distinguished between the EE
and EI type of binaural unit response. The EE (excitatory– ex-
citatory) abbreviation labels units where the sound level in-
crement at both sides has an excitatory effect, while EI
stands for the excitatory effect of one side and inhibitory ef-
fect of the other side. However, this is a phenomenological
classification and does not imply the synaptic mechanisms.

In the mammalian MSO circuit, other inhibitory inputs be-
sides those from the MNTB (Medial Nucleus of Trapezoid
Body) are involved. Each sensory pathway, including the audi-
tory pathway, also contains local inhibitory interneurons and
often other inhibitory circuits, like, for example the indirect
pathway of the basal ganglia. In all these synaptic circuits,
the role of inhibition is to dynamically set up the gain of the
circuit via feedback connections. Other inhibitory synapses
in the MSO circuit contribute to setting the gain, adaptation,
and perhaps to further unknown functions of the circuit.

Our model follows anatomical connections of the feedfor-
ward sound localization pathway. Although throughout the
paper excitatory and inhibitory synapses are referred to
according to their anatomical and functional classification,
we have shown that instead of synapse polarity, it is possible
to use a timing rule for coincidence detection. Thus, we have
been able to describe the circuitry independent of the synapses
polarity in more abstract and simple terms. We have also
demonstrated that our results are in line with the experimen-
tal results related to inhibition blocking (Brand et al., 2002;
Pecka et al., 2008).

3.3. Properties of the circuit

Having studied the parameters that affect important proper-
ties of the ITD curve, we have found that the parameter signif-
icantly affecting peak position is the coincidence window
width. One consequence of shifting the peak by employing a
wider window is a steeper ITD function in the physiological
range of ITDs. Bringing steepness to its maximum value
would require wCD≈0.6 ms which is higher than the observed
values (Jercog et al., 2010). Using smaller jitter values proved
much more effective in increasing the output range and
steepness of the ITD curve. As noted in Section 4.3, on the
one hand, jitter plays a positive role for more subtle differen-
tiation of azimuthal space, but on the other hand, higher jitter
reduces coding efficiency. This indicates the possible exis-
tence of an optimal jitter value which merits further research.

Asymptotic behavior of the sound direction “ideally ob-
served” by the model was also investigated. This gives us
overall precision and time performance for the whole circuit.
It could be seen that an ideal observer located on a single
fiber performs in the range of seconds, which is acceptable
considering that the auditory pathway works in parallel
using tens to hundreds of neurons. Using an ergodic assump-
tion for the ideal observer, we obtain a hundreds of milli-
seconds time range. This allows us to connect physiological
and psychoacoustical observations, which are normally two
separate areas of research.

Besides the regular input, theMeddis (2006)model of theaudi-
tory periphery was used to compare the performance of the two
input models. Generally, the Meddis model causes a fall in the
firing rate delivered as the input to our model, compared to the
regular spiking input we used. In addition, only phase-locked
spikes will be registered by coincidence detection. This reduces
both the available dynamic range of values of the ITD curve and
the computational performance of the circuit. The question re-
mains how closely this model corresponds to the real input to
theMSO, since themodel produces only the spike train occurring
at the auditory fiber. The cochlear nucleus can improve the
phase-locking due to summation of more AN fiber inputs.

The timing jitter also plays a role in deteriorating the phase-
locking precision. Most of the auditory processing stages blur
the phase locking. The comparisonwith theMeddismodel indi-
cates that introducing more processing stages into the circuit
does not necessarily blur the spike trains beyond the state
when the circuit would no longer function andwould no longer
possess a functioning coincidence detection mechanism. In-
deed, Reed et al. (2002) have shown that the phase locking in
a model neuron within a neural circuit can deteriorate, can be
sharpened, or can stay unaltered, depending upon the connec-
tion divergence and other simple properties of the neuron as a
relay within the sensory pathway.

3.4. Ergodic assumption

The performance of a single binaural neuron has been shown
for several parameters and inputs. Time (TA) to reach the esti-
mate of DITD by single neuron is higher than in psychoacoustic
experiments. It is known that the auditory pathway uses AN
fibers and subsequent neurons in parallel so the brainstem
contains several parallel circuits cooperating on the computa-
tion of azimuth. We used the ergodic hypothesis to divide TA

by the number of parallel neurons. This hypothesis used in in-
terpretation of Fig. 6 states that the same result is obtained
when counting spikes for a long time as when sampling
them across a given number of parallel fibers. This is also con-
sistent with the actual ITD processing in the MSO reported in
several species, which produced the same ITD tuning curves
by several repeats of sound stimulus, as shown, for instance
by Goldberg and Brown (1969).
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The exact number of circuits which work in parallel is dif-
ficult to estimate. It concerns not only the number of the bin-
aural MSO neurons but also the number and connectivity of
the spherical bushy cells of the cochlear nucleus. About 7000
of these cells connect to the MSO in a domestic cat. Since
their axons branch, the average number of connections to
the MSO is difficult to obtain with the current methodology
(P.X. Joris, personal communication). Next, the exact spectral
content of incoming acoustic stimuli affects the number of in-
volved fibers due to the tonotopic organization. For example
the broadband stimuli would be expected to perform better
than pure tone stimuli due to higher number of parallel fibers
transmitting the signal. All these problems were not studied
deeper in the current paper but they pose interesting open
questions for further work.

3.5. Stochastic coding of ITD

Finally,wewould like to point out the use of thebuilt-in random
number generator in our model. By means of these stochastic
simulationswehaveobtained realizations of a randomvariable,
namely of the timing jitter. The results obtained for the ideal
observer are shown together with their statistical description.
A previous paper by Marsalek and Lansky (2005) presented a
stochastic model of a coincidence detector and theoretically
calculated average detection times. In this paper a further step
has been taken, as the entireMSOmodel circuit has been studied.
The precision of the ITD detection assessed by our model re-
quires further verification by future experiments employing psy-
choacoustical data.
4. Experimental procedures

4.1. Spike generator

In some simulations a constant frequency spike train was
used as the input, with two spikes generated in each cycle —
one to one side, the other delayed by the ITD (this variable is
denoted by DITD) to the other side.

While the regular spiking input is suitable for analysis of cir-
cuit parameter properties, amore biologically plausiblemodel of
spike generation was also included. Specifically, the first part of
the computationalmodel of the auditory periphery as described
in Meddis (2006) was used. Here, the complex acoustic stimuli
are passed through successive stages of processing: stapes, bas-
ilar membrane, inner hair cell receptor potential, presynaptic
calcium currents and transmitter release events, AN (auditory
nerve) synapse and finally AN spiking response, including re-
fractory effects. The output – spike train in the auditory nerve
fiber with selected characteristic frequency – is subsequently
used as an input to our circuit. An extensive overview of all the
parameters can be found in the appendix under Meddis (2006).
This model was then used without further modifications.

4.2. Jitter generator

In the next processing stage, jitter is generated and added to
the spike times, simulating natural noise occurring in the
neural spike transmission. Each spike is shifted in time by a
small random delay value defined as D=TJ(B(a,b)−0.5), where
B(a,b) is a random variable from the beta distribution with pa-
rameters a=2, b=4 and TJ is the timing jitter magnitude.
Values of a=2 and b=4 are the smallest nontrivial values
resulting in a nonzero skewness of the beta probability densi-
ty function, as discussed in Drapal and Marsalek (2010). Note
the positive role of this type of noise in the circuit — it is be-
cause of this noise that more refined azimuth precision is
achieved.

4.3. Coincidence detector

Whenever two spikes are detected within the short time win-
dow, the coincidence detector neuron fires. In the classical
Jeffress (1948) model, coincidence detection is realized by the
excitatory spikes converging on a binaural neuron from both
sides simultaneously in a short time succession. The mere
fact of coincidence determines the azimuth defined by the
position of the neuron in a delay line. The interpolation model
also introduces a short time window for detecting consequent
spikes, while distinguishing between two EPSPs and a pair of
one EPSP and one IPSP. The preceding application of the timing
jitter is of essential importance to the circuit here as it allows
a more subtle distribution of coincidences. Instead of a binary
answer about two spikes being in the coincidence window, a
probabilistic variable is obtained which, in turn, allows a finer
distribution of recognized ITD values. Compared to the “all or
none” output of the Jeffress model, this means that one single
binaural neuron is already capable of determining DITD. How-
ever a longer spike train is needed to achieve the necessary pre-
cision of the estimate.

The important property of the ITD curve is its peak shift as
observed in an experimental study of mammals (Brand et al.,
2002). First, this leads to a shift of possible ITD values inside
the physiologically relevant range. Second, it allows the un-
ambiguous interpolation of a particular firing rate to a single
ITD value. This is in contrast to the situation where the ITD
curve has a peak at DITD=0 and the concave shape allows
two possible ITDs to be selected. We show that in order to
achieve this ITD curve shift, we need an “asymmetric” rule
of EPSP and IPSP coincidence detection, allowing incoming
spikes to trigger an output spike only if the inhibitory spike pre-
cedes the excitatory spike. This corresponds to the detailed bio-
physics of the PSPs. Pharmacological suppression of the
inhibition is equivalent in ourmodel to disabling this asymmet-
ric rule and letting the symmetric coincidencedetection operate
on the incoming EPSPs only. By “asymmetry” we mean that the
order of excitatory and inhibitory spikes matters — in contrast
to the excitatory only situation.

4.4. Ideal observer module

Compared to the Jeffress model where the azimuth is deter-
mined by the position of the firing neuron in the delay line,
the interpolation model relies on the value of a firing rate.
The firing rate is realized by random variations in the input
spike timings, and one way to eliminate this random compo-
nent is to take an average of the firing rates over a given
time. Because the input sound sequences may only last for a
short period of time, we would like to know what length of



Table 1 – The basic set parameters.

Parameter Value

TJ 1 ms
wCD 600 μs
fin 140 Hz
T 500 s
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time intervals are needed in order to obtain an azimuth esti-
mate. Our aim here is not to model the higher stages of spatial
sound localization, but rather to estimate the information
that is available after theMSO processing stage and to connect
the physiologically relevant information (firing rate) with ex-
perimental azimuth measurements.

The concept of the ideal observer, originally also known as
the ideal receiver, is frequently used in the signal detection
theory and psychophysics (Tanner, 1961). By implementing
the ideal observer module, we used this concept to describe
a mechanism which represents the function of the next pro-
cessing stages of the auditory pathway. It should be noted
that this is not strictly an ideal observer analysis. Unlike pre-
vious modules, this module does not process the data. In-
stead, it simply extracts the available information encoded
in the output spike train from the binaural neuron, and in par-
ticular it reads the sound source direction from the MSO neu-
ron. This is done via the interpolation of the firing rates in
the ITD curve. This lookup (calibration) function must be
known beforehand and it can be approximated by a sine func-
tion RITD≈Rmaxsin2πfinDITD. The meaning of the parameters of
this approximation are listed in the Results section.

Since the ideal observer has complete access to perceptual
information, the azimuth perception can be obtained. In psy-
chophysics this precision is called the just noticeable differ-
ence, and in azimuthal sound localization in the head-on
direction is 4° (angular degrees). This has been observed with-
in a decade variation amongst distant animal species, in
humans, Mills (1972), guinea pigs, McAlpine et al. (1996) barn
owls, Moiseff and Konishi (1981) and even in parasitic flies
Ormia ochracea, Miles et al. (1995). Here, different azimuths
are distinguished as distinct points on the ITD curve along
its slope. Thanks to interpolation the just noticeable differ-
ence is obtained from the difference between two spike train
firing rates elicited by two stimuli (azimuths) φ1 and φ2. The
firing rates of spike trains in response to stimuli φ1 and φ2

denoted as R1 and R2 can be described as random variables
with means μ1 and μ2 and standard deviation σ (we assume
σ1=σ2). Detection distance is defined as: d=(μ2−μ1)/σ. When
t→∞, firing rates converge to their means, R1→μ1 and R2→μ2.
The computational precision performance of the circuit is depen-
dent upon speed of this convergence. Thus wemeasure the time
to reach the direction estimate TA. This variable ismainly depen-
dent on the firing rate RITD and input sound frequency fin, as well
as other parameters.

4.5. Simulations and parameters

The model circuit was simulated numerically with explora-
tion of plausible parameter space. Each of the circuit modules
has its own set of parameters which together define the cir-
cuit parameters. A default value of jitter of TJ=1 ms was
assigned since the experimentally observed values of jitter
do not exceed 1 ms as shown for example in the experiment
involving the octopus type cells of the cochlear nucleus in a
domestic cat (Oertel et al., 2000). The width of the coincidence
windowwCD has been assigned as 600 μs. This is in agreement
with the value used in a model part of Beckius et al. (1999).
Briefly, their model performed well as long as the coincidence
detection window was shorter than the period of the
fundamental frequency. (We get 1/wCD=1667 Hz, therefore it
must be fin<1667 Hz.) This latter assumption is also frequently
mentioned in other models. The subcellular experimental
studies also measured values of relevant postsynaptic
current- and voltage-dependent ionic current rise time. The
values measured give window width in the sub-millisecond
range close to this value (Jercog et al., 2010). Representative
fundamental sound frequency in the following results is
fin=140 Hz. Besides the fundamental frequency of spike gener-
ator fin, we set the duration of most simulations to 500 s in
order to reach a steady state. We select the parameters
above as a basic set, summarized in Table 1. An extensive list
of circuit parameters can be found in the Supplementary in-
formation. In all the simulations we use this basic set of the
parameters unless stated otherwise.

The physiological range of DITD in humans when localizing
sound source in one quadrant (0–90°) ranges from 0 to 600 μs.
This can be calculated from the sound speed in the air and the
distance between the ears. Differences in the ear distance of
smaller animals have to be taken into account when inter-
preting the data recorded in various laboratory animals.

Supplementary materials related to this article can be
found online at doi:10.1016/j.brainres.2011.08.048.
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