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Abstract

A strong direct product theorem says that if we want to
compute k independent instances of a function, using less
than k times the resources needed for one instance, then
our overall success probability will be exponentially small
in k. We establish such theorems for the classical as well
as quantum query complexity of the OR function. This
implies slightly weaker direct product results for all total
functions.We prove a similar result for quantumcommu-
nication protocols computing k instances of the Disjoint-
ness function. These results imply a time-space tradeoff
T 2S = Ω

(
N3
)

for sorting N items on a quantum com-
puter, which is optimal up to polylog factors. They also
give several tight time-space and communication-space
tradeoffs for the problems of Boolean matrix-vector mul-
tiplication and matrix multiplication.

1. Introduction

1.1. Direct product theorems

For every reasonable model of computation one can
ask the following fundamental question:

How do the resources needed for computing
k independent instances of f scale with the
resources needed for one instance and with k?

Here “resource” needs to be specified. It could refer to
time, space, queries, communication etc. Similarly we
need to define what we mean by “computing f”, for
instance whether we allow the algorithm some proba-
bility of error, and whether this probability of error is
average-case or worst-case.

In this paper we consider two kinds of resources,
queries and communication, and allow our algorithms
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some error probability. An algorithm is given k in-
puts x1, . . . , xk, and has to output the vector of k
answers f(x1), . . . , f(xk). The issue is how the algo-
rithm can optimally distribute its resources among the
k instances it needs to compute. We focus on the rela-
tion between the total amount T of resources available
and the best-achievable success probability σ (which
could be average or worst-case). Intuitively, if every al-
gorithm with t resources must have some constant er-
ror probability when computing one instance of f , then
for computing k instances we expect a constant error
on each instance and hence an exponentially small suc-
cess probability for the k-vector as a whole. Such a
statement is known as a weak direct product theorem:

If T ≈ t, then σ = 2−Ω(k)

However, even if we give our algorithm roughly kt re-
sources, on average it still has only t resources available
per instance. So even here we expect a constant error
per instance and an exponentially small success prob-
ability overall. Such a statement is known as a strong
direct product theorem:

If T ≈ kt, then σ = 2−Ω(k)

Strong direct product theorems, though intuitively
very plausible, are generally hard to prove and some-
times not even true. Shaltiel [41] exhibits a general class
of examples where strong direct product theorems fail.
This applies for instance to query complexity, commu-
nication complexity, and circuit complexity. In his ex-
amples, success probability is taken under the uniform
probability distribution on inputs. The function is cho-
sen such that for most inputs, most of the k instances
can be computed quickly and without any error prob-
ability. This leaves enough resources to solve the few
hard instances with high success probability. Hence for
his functions, with T ≈ tk, one can achieve average suc-
cess probability close to 1.

Accordingly, we can only establish direct prod-
uct theorems in special cases. Examples are Nisan



et al.’s [34] strong direct product theorem for “de-
cision forests”, Parnafes et al.’s [36] direct prod-
uct theorem for “forests” of communication protocols,
Shaltiel’s strong direct product theorems for “fair” de-
cision trees and the discrepancy bound for communica-
tion complexity [41]. In the quantum case, Aaronson [2]
established a result for the unordered search prob-
lem that lies in between the weak and the strong the-
orems: every T -query quantum algorithm for search-
ing k marked items among N = kn input bits will
have success probability σ ≤ O

(
T 2/N

)k. In particu-
lar, if T �

√
kn, then σ = 2−Ω(k).

Our main contributions in this paper are strong di-
rect product theorems for the OR-function in various
settings. First consider the case of classical randomized
algorithms. Let ORn denote the n-bit OR-function,
and let f (k) denote k independent instances of a func-
tion f . Any randomized algorithm with less than, say,
n/2 queries will have a constant error when comput-
ing ORn. Hence we expect an exponentially small suc-
cess probability when computing OR(k)

n using � kn
queries. We prove this in Section 3:

SDPT for classical query complexity:
Every randomized algorithm that computes
OR(k)

n using T ≤ αkn queries has worst-case
success probability σ = 2−Ω(k) (for α > 0 a
sufficiently small constant).

For simplicity we stated this with σ being the worst-
case success probability, but the statement is also valid
for the average probability under a k-fold product dis-
tribution that is implicit in our proof.

This DPT for OR implies a weaker DPT for all to-
tal functions f , via the notion of block sensitivity bs(f).
Using techniques of Nisan and Szegedy [35], we can em-
bed ORbs(f) in f (with the promise that the weight
of the input is 0 or 1). On the other hand, the clas-
sical bounded-error query complexity R2(f) is upper
bounded by bs(f)3 [7]. This implies:

Every randomized algorithm that computes
f (k) using T ≤ αkR2(f)1/3 queries has worst-
case success probability σ = 2−Ω(k).

This theorem falls short of a true strong direct prod-
uct theorem in having R

1/3
2 (f) instead of R2(f) in the

resource bound. However, the other two important as-
pects of a SDPT remain valid: the linear dependence
of the resources on k and the exponential decay of the
success probability.

Next we turn our attention to quantum algorithms.
Buhrman et al. [16] actually proved that roughly k
times the resources for one instance suffices to compute

f (k) with success probability close to 1, rather than ex-
ponentially small: Q2(f (k)) = O(kQ2(f)), where Q2(f)
denotes the quantum bounded-error query complexity
of f (such a result is not known to hold in the classical
world). For instance, Q2(ORn) = Θ(

√
n) by Grover’s

search algorithm, so O(k
√

n) quantum queries suffice
to compute OR(k)

n with high success probability. In Sec-
tion 4 we show that if we make the number of queries
slightly smaller, the best-achievable success probabil-
ity suddenly becomes exponentially small:

SDPT for quantum query complexity:
Every quantum algorithm that computes
OR(k)

n using T ≤ αk
√

n queries has worst-
case success probability σ = 2−Ω(k) (for
α > 0 a sufficiently small constant).

Our proof uses the polynomial method [7] and is com-
pletely different from the classical proof. The polyno-
mial method was also used by Aaronson [2] in his proof
of a weaker version, mentioned above. Our proof takes
its starting point from his proof, analyzing the degree of
a single-variate polynomial that is 0 on {0, . . . , k−1}, at
least σ on k, and between 0 and 1 on {0, . . . , kn}. The
difference between his proof and ours is that we par-
tially factor this polynomial, which gives us some nice
extra properties over Aaronson’s approach of differen-
tiating the polynomial. In addition, we use a strong re-
sult of Coppersmith and Rivlin [20]. In both cases (dif-
ferent) extremal properties of Chebyshev polynomials
finish the proofs. Again, we also get a weaker result for
all total functions:

Every quantum algorithm that computes f (k)

using T ≤ αkQ2(f)1/6 queries has worst-case
success probability σ = 2−Ω(k).

The third and last setting where we establish a strong
direct product theorem is quantum communication
complexity. Suppose Alice has an n-bit input x and Bob
has an n-bit input y. These x and y represent sets, and
DISJn(x, y) = 1 iff those sets are disjoint. Note that
DISJn is the negation of ORn(x∧y), where x∧y is the
n-bit string obtained by bitwise AND-ing x and y. In
many ways, DISJn has the same central role in com-
munication complexity as ORn has in query complex-
ity. In particular, it is “co-NP complete” [6]. The com-
munication complexity of DISJn has been well stud-
ied: it takes Θ(n) bits of communication in the clas-
sical world [24, 38] and Θ(

√
n) in the quantum world

[13, 23, 3, 39]. For the case where Alice and Bob want
to compute k instances of Disjointness, we establish a
strong direct product theorem in Section 5:

SDPT for q. communication complexity:
Every quantum protocol that computes



DISJ(k)
n communicating T ≤ αk

√
n qubits

has worst-case success probability σ = 2−Ω(k).

Our proof uses Razborov’s [39] lower bound technique
to translate the quantum protocol to a polynomial, at
which point the polynomial results established for the
quantum query SDPT take over. We can obtain similar
results for other symmetric predicates.

One may also consider computing the parity of the k
outcomes instead of all k outcomes. This issue has been
well studied, particularly in circuit complexity, and
generally goes under the name of XOR lemmas [44, 21].
In this paper we focus on the vector version, but we can
prove similar strong bounds for the parity version. In
particular, we can get a strong XOR lemma for the
quantum case using the technique of Cleve et al. [19,
Section 3]. They show how the ability to compute the
parity of any subset of k bits with probability 1/2 + ε,
suffices to compute the full k-vector with probability
4ε2. Hence our strong quantum direct product theo-
rems imply strong quantum XOR lemmas.

1.2. Time-Space and Communication-
Space tradeoffs

Apart from answering a fundamental question about
the computational models of (quantum) query com-
plexity and communication complexity, our direct
product theorems also imply a number of new and op-
timal time-space tradeoffs.

First, we consider the tradeoff between the time
T and space S that a quantum circuit needs for
sorting N numbers. Classically, it is well known
that TS = Ω

(
N2
)
, and this tradeoff is achiev-

able [8]. In the quantum case, Klauck [26] con-
structed a bounded-error quantum algorithm that
runs in time T = O((N log N)3/2/

√
S) for all

(log N)3 ≤ S ≤ N/ log N . He also showed1 a lower
bound TS = Ω

(
N3/2

)
, which is close to optimal for

small S but not for large S. We use our strong di-
rect product theorem to prove T 2S = Ω

(
N3
)
. This is

tight up to polylog factors.
Secondly, we consider time-space and

communication-space tradeoffs for the problems
of Boolean matrix-vector product and Boolean ma-
trix product. In the first problem there are an N × N
matrix A and a vector b of dimension N , and
the goal is to compute the vector c = Ab, where
ci = ∨N

j=1 (A[i, j] ∧ bj). In the setting of time-space
tradeoffs, the matrix A is fixed and the input is

1 Unfortunately there is an error in the proof presented in [26],
namely Lemma 5 appears to be wrong.

the vector b. In the problem of matrix multiplica-
tion two matrices have to be multiplied with the
same type of Boolean product, and both are inputs.
Time-space tradeoffs for Boolean matrix-vector mul-
tiplication have been analyzed in an average-case
scenario by Abrahamson [4], whose results give a
worst-case lower bound of TS = Ω

(
N3/2

)
for clas-

sical algorithms. He conjectured that a worst-case
lower bound of TS = Ω

(
N2
)

holds. Using our clas-
sical direct product result we are able to confirm
this, i.e., there is a matrix A, such that comput-
ing Ab requires TS = Ω

(
N2
)
. We also show a lower

bound of T 2S = Ω
(
N3
)

for this problem in the quan-
tum case. Both bounds are tight (the second within
a logarithmic factor) if T is taken to be the num-
ber of queries to the inputs. We also get a lower
bound of T 2S = Ω

(
N5
)

for the problem of multiply-
ing two matrices in the quantum case. This bound is
close to optimal for small S.

Research on communication-space tradeoffs in the
classical setting has been initiated by Lam et al. [31] in
a restricted setting, and by Beame et al. [9] in a gen-
eral model of space-bounded communication complex-
ity. In the setting of communication-space tradeoffs,
players Alice and Bob are modeled as space-bounded
circuits, and we are interested in the communication
cost when given particular space bounds. For the prob-
lem of computing the matrix-vector product Alice re-
ceives the matrix A (now an input) and Bob the vec-
tor b. Beame et al. gave tight lower bounds e.g. for the
matrix-vector product and matrix product over GF(2),
but stated the complexity of Boolean matrix-vector
multiplication as an open problem. Using our direct
product result for quantum communication complex-
ity we are able to show that any quantum protocol
for this problem satisfies C2S = Ω

(
N3
)
. This is tight

within a polylogarithmic factor. We also get a lower
bound of C2S = Ω

(
N5
)

for computing the product of
two matrices, which again is tight.

No classical lower bounds for these problems were
known previously, and finding better classical bounds
than these remains open. The possibility to show good
quantum bounds comes from the deep relation between
quantum protocols and polynomials implicit in [39].

2. Preliminaries

We assume familiarity with quantum computing [32]
and sketch the model of query complexity, referring
to [18] for more details, also on the close relation be-
tween query complexity and degrees of multivariate
polynomials. Suppose we want to compute some func-
tion f . For input x ∈ {0, 1}N , a query gives us access



to the input bits. It corresponds to the unitary map
O : |i, b, z〉 7→ |i, b ⊕ xi, z〉. Here i ∈ [N ] = {1, . . . , N}
and b ∈ {0, 1}; the z-part is workspace, which is not af-
fected by the query. We assume the input can be ac-
cessed only via such queries. A T -query quantum algo-
rithm has the form A = UT OUT−1 · · ·OU1OU0, where
the Uk are fixed unitaries, independent of x. This A
depends on x via the T applications of O. The algo-
rithm starts in initial S-qubit state |0〉 and its output
is the result of measuring a dedicated part of the fi-
nal state A|0〉. For a Boolean function f , the output
of A is obtained by observing the leftmost qubit of the
final superposition A|0〉, and its acceptance probabil-
ity on input x is its probability of outputting 1. One
of the most interesting quantum query algorithms is
Grover’s search algorithm [22, 10]. It can find an in-
dex of a 1-bit in an n-bit input in expected number of
O
(√

n/(|x|+ 1)
)

queries, where |x| is the Hamming
weight (number of ones) in the input. If we know that
|x| ≤ 1, we can solve the search problem exactly us-
ing π

4

√
n queries [11].

For investigating time-space tradeoffs we use the cir-
cuit model. A circuit accesses its input via an oracle like
a query algorithm. Time corresponds to the number of
gates in the circuit. We will, however, usually consider
the number of queries to the input, which is obviously
a lower bound on time. A quantum circuit uses space S
if it works with S qubits only. We require that the out-
puts are made at predefined gates in the circuit, by
writing their value to some extra qubits that may not
be used later on. Similar definitions are made for clas-
sical circuits.

In the model of quantum communication complex-
ity, two players Alice and Bob compute a function f
on distributed inputs x and y. The complexity mea-
sure of interest in this setting is the amount of commu-
nication. The players follow some predefined protocol
that consists of local unitary operations, and the ex-
change of qubits. The communication cost of a proto-
col is the maximal number of qubits exchanged for any
input. In the standard model of communication com-
plexity, Alice and Bob are computationally unbounded,
but we are also interested in what happens if they have
bounded memory, i.e., they work with a bounded num-
ber of qubits. To this end we model Alice and Bob as
communicating quantum circuits, following Yao [45].

A pair of communicating quantum circuits is ac-
tually a single quantum circuit partitioned into two
parts. The allowed operations are local unitary opera-
tions and access to the inputs that are given by oracles.
Alice’s part of the circuit may use oracle gates to read
single bits from her input, and Bob’s part of the cir-
cuit may do so for his input. The communication C

between the two parties is simply the number of wires
carrying qubits that cross between the two parts of the
circuit. A pair of communicating quantum circuits uses
space S, if the whole circuit works on S qubits.

In the problems we consider, the number of outputs
is much larger than the memory of the players. There-
fore we use the following output convention. The player
who computes the value of an output sends this value
to the other player at a predetermined point in the pro-
tocol. In order to make our models as general as possi-
ble, we furthermore allow the players to do local mea-
surements, and to throw qubits away as well as pick
up some fresh qubits. The space requirement only de-
mands that at any given time no more than S qubits
are in use in the whole circuit.

A final comment regarding upper bounds: Buhrman
et al. [13] showed how to run a query algorithm in a
distributed fashion with small overhead in the com-
munication. In particular, if there is a T -query quan-
tum algorithm computing N -bit function f , then there
is a pair of communicating quantum circuits with
O(T log N) communication that computes f(x∧y) with
the same success probability. We refer to the book of
Kushilevitz and Nisan [30] for more on communication
complexity in general, and to the surveys [25, 12, 42]
for more on its quantum variety.

3. SDPT for Classical Queries

In this section we give the strong direct product
theorem for randomized algorithms computing k in-
dependent instances of ORn. Unlike the quantum case,
the proof (sketched in Appendix A) is quite straight-
forward, proving a direct product theorem for non-
adaptive algorithms as an intermediate.

Theorem 1 (SDPT for OR) For every 0 < γ < 1,
there exists an α > 0 such that every randomized algo-
rithm for OR(k)

n with T ≤ αkn queries has success prob-
ability σ ≤ 2−γk.

The strong direct product theorem for OR implies a
weaker direct product theorem for all functions. In this
weaker version, the success probability of computing k
instances still goes down exponentially with k, but we
need to start from a polynomially smaller bound on the
overall number of queries. For x ∈ {0, 1}n and S ⊆ [n],
we use xS to denote the n-bit string obtained from x
by flipping the bits in S. Consider a (possibly partial)
function f : D → Z, with D ⊆ {0, 1}n. The block sensi-
tivity bsx(f) of x ∈ D is the maximal b for which there
are disjoint sets S1, . . . , Sb such that f(x) 6= f(xSi).
The block sensitivity of f is bs(f) = maxx∈D bsx(f).
Block sensitivity is closely related to deterministic and
bounded-error classical query complexity:



Theorem 2 ([33, 7]) R2(f) = Ω(bs(f)) for all f ,
D(f) ≤ bs(f)3 for all total Boolean f .

Nisan and Szegedy [35] showed how to embed a
bs(f)-bit OR-function (with the promise that the in-
put has weight ≤ 1) into f . Combined with our strong
direct product theorem for OR, this implies a direct
product theorem for all functions f in terms of bs(f):

Theorem 3 For every 0 < γ < 1, there exists an
α > 0 such that for every f , every classical algorithm
for f (k) with T ≤ αkbs(f) queries has success probabil-
ity σ ≤ 2−γk.

This is optimal if R2(f) = Θ(bs(f)), which is the
case for most functions. For total functions, the gap be-
tween R2(f) and bs(f) is not more than cubic, hence

Corollary 4 For every 0 < γ < 1, there exists an α > 0
such that for every total Boolean f , every classical algo-
rithm for f (k) with T ≤ αkR2(f)1/3 queries has success
probability σ ≤ 2−γk.

4. SDPT for Quantum Queries

In this section we prove a strong direct product the-
orem for quantum algorithms computing k indepen-
dent instances of OR. Our proof relies on the polyno-
mial method of [7]. The following key lemma is proved
in Appendix B.

Lemma 5 Suppose p is a single-variate degree-D poly-
nomial such that for some δ ≥ 0

−δ ≤ p(i) ≤ δ for all i ∈ {0, . . . , k − 1},
p(k) = σ,
p(i) ∈ [−δ, 1 + δ] for all i ∈ {0, . . . , N}.

Then for every integer C ∈ [1, N − k) and µ = 2C/(N −
k − C) we have

σ ≤ δk2k−1 + a

(
1 + δ +

δ(2N)k

(k − 1)!

)
·

exp
(

b(D − k)2

(N − k − C)
+ 2(D − k)

√
2µ + µ2 − k ln(C/k)

)
,

where a, b are the constants of Theorem 23 (Appendix B).

We will apply this lemma with δ negligibly small, D =
α
√

kN for small α, and C = keγ+1, giving

σ ≤ exp
(
(bα2 + 4αeγ/2+1/2 − 1− γ)k

)
≤ e−γk ≤ 2−γk.

This will imply a strong tradeoff between queries and
success probability for quantum algorithms that have
to find k ones in an N -bit input. A k-threshold algo-
rithm with success probability σ is an algorithm on N -
bit input x, that outputs 0 with certainty if |x| < k,
and outputs 1 with probability at least σ if |x| = k.

Theorem 6 For every γ > 0, there exists an α > 0
such that every quantum k-threshold algorithm with T ≤
α
√

kN queries has success probability σ ≤ 2−γk.

Proof. Fix γ > 0 and consider a T -query k-threshold
algorithm. By [7], its acceptance probability is an N -
variate polynomial of degree D ≤ 2T ≤ 2α

√
kN and

can be symmetrized to a single-variate polynomial p
with the properties

p(i) = 0 if i ∈ {0, . . . , k − 1}
p(k) ≥ σ
p(i) ∈ [0, 1] for all i ∈ {0, . . . , N}

Choosing α > 0 sufficiently small and δ = 0, the result
follows from Lemma 5. �

This implies a strong direct product theorem for k
instances of the n-bit search problem:

Theorem 7 (SQDPT for Search) For every γ > 0,
there exists an α > 0 such that every quantum algorithm
for Search(k)

n with T ≤ αk
√

n queries has success proba-
bility σ ≤ 2−γk.

Proof. Set N = kn, fix a γ > 0 and a T -query algo-
rithm A for Search(k)

n with success probability σ. Now
consider the following algorithm on N -bit input x:

1. Apply a random permutation π to x.
2. Run A on π(x).
3. Query each of the k positions that A outputs, re-

turn 1 iff at least k/2 of those bits are 1.

This uses T + k queries. We will show that it is a k/2-
threshold algorithm. If |x| < k/2, it always outputs 0.
If |x| = k/2, the probability that π puts all k/2 ones in
distinct n-bit blocks is

N

N
· N − n

N − 1
· · ·

N − k
2n

N − k
2

≥

(
N − k

2n

N

)k/2

= 2−k/2.

Hence our algorithm outputs 1 with probability at least
σ2−k/2. Choosing α sufficiently small, the previous the-
orem implies σ2−k/2 ≤ 2−(γ+1/2)k, hence σ ≤ 2−γk. �

Our bounds are quite precise for α � 1. We can
choose γ = 2 ln(1/α) − O(1) and ignore some lower-
order terms to get roughly σ ≤ α2k. On the other
hand, it is known that Grover’s search algorithm with
α
√

n queries on an n-bit input has success probabil-
ity roughly α2 [10]. Doing such a search on all k in-
stances gives overall success probability α2k.

Theorem 8 (SQDPT for OR) There exist α, γ > 0
such that every quantum algorithm for OR(k)

n with T ≤
αk
√

n queries has success probability σ ≤ 2−γk.



Proof. An algorithm A for OR(k)
n with success prob-

ability σ can be used to build an algorithm A′ for
Search(k)

n with slightly worse success probability:

1. Run A on the original input and remember which
blocks contain a 1.

2. Run simultaneously (at most k) binary searches
on the nonzero blocks. Iterate this s = 2 log(1/α)
times. Each iteration runs A on the parts of the
blocks that are known to contain a 1, halving the
remaining instance size each time.

3. Run the exact version of Grover’s algorithm on
each of the remaining parts of the instances to
look for a one there (each part has size n/2s).

This new algorithm A′ uses (s + 1)T + π
4 k
√

n/2s =
O(α log(1/α)k

√
n) queries. With probability at least

σs+1, A succeeds in all iterations, in which case A′

solves Search(k)
n . By Theorem 7, for every γ′ > 0 there

is an α > 0 such that σs+1 ≤ 2−γ′k. This gives the the-
orem with γ = γ′/(s + 1). �

Choosing parameters carefully, we can show that for
every γ < 1 there is an α such that αk

√
n queries give

σ ≤ 2−γk. Clearly, σ = 2−k is achievable without any
queries by random guessing.

As in the classical case, we also get weaker bounds
for all functions, using the following results from [7]:
Q2(f) = Ω

(√
bs(f)

)
for all f and D(f) ≤ bs(f)3 for

all total Boolean f .

Theorem 9 There exist α, γ > 0 such that for every f ,
every quantum algorithm for f (k) with T ≤ αk

√
bs(f)

queries has success probability σ ≤ 2−γk.

Corollary 10 There exist α, γ > 0 such that for ev-
ery total Boolean f , every quantum algorithm for f (k)

with T ≤ αkQ2(f)1/6 queries has success probability
σ ≤ 2−γk.

5. SDPT for Quantum Communication

Here we establish a strong direct product theorem
for quantum communication, specifically for protocols
that compute k independent instances of the Disjoint-
ness problem. Our proof relies crucially on the beautiful
technique that Razborov introduced to lower bound the
quantum communication complexity of one instance of
Disjointness [39]. It allows us to translate a quantum
communication protocol to a single-variate polynomial
that represents, roughly speaking, the protocol’s accep-
tance probability as a function of the size of the inter-
section of x and y. The following lemma is implicit in
Razborov’s paper (see our long version [1]).

Lemma 11 Consider a Q-qubit quantum com-
munication protocol on N -bit inputs x and y,
with acceptance probabilities P (x, y). Define
P (i) = E|x|=|y|=N/4,|x∧y|=i|[P (x, y)], with expec-
tation taken uniformly over all x, y that each have
weight N/4 and that have intersection i. For ev-
ery d ≤ N/4 there exists a degree-d polynomial q such
that |P (i)− q(i)| ≤ 2−d/4+2Q for all i ∈ {0, . . . , N/8}.

Theorem 12 (SQDPT for Disjointness) There
exist α, γ > 0 such that every quantum protocol
for DISJ(k)

n with Q ≤ αk
√

n qubits of communica-
tion has success probability p ≤ 2−γk.

Proof (sketch). By doing the same trick with s =
2 log(1/α) rounds of binary search as for Theorem 8, we
can tweak a protocol for DISJ(k)

n to a protocol that sat-
isfies (with P (i) defined as in Lemma 11, N = kn and
σ = ps+1) P (i) = 0 if i ∈ {0, . . . , k − 1}; P (k) ≥ σ;
P (i) ∈ [0, 1] for all i ∈ {0, . . . , N}. Instead of exact
Grover we use an exact version of the O(

√
n)-qubit Dis-

jointness protocol of [3] (the [13]-protocol would lose a
log n-factor). Lemma 11, using d = 12Q, then gives a
degree-d polynomial q that differs from P by at most
δ ≤ 2−Q on all i ∈ {0, . . . , N/8}. This δ is sufficiently
small to apply Lemma 5, which in turn upper bounds
σ and hence p. �

6. Time-Space Tradeoff for Quantum
Sorting

We will now use our strong direct product theorem
to get near-optimal time-space tradeoffs for quantum
circuits for sorting. This follows Klauck [26], who de-
scribed an upper bound T 2S = O

(
(N log N)3

)
and a

lower bound TS = Ω
(
N3/2

)
. In our model, the num-

bers a1, . . . , aN that we want to sort can be accessed
by means of queries, and the number of queries lower
bounds the actual time taken by the circuit. The cir-
cuit has N output gates and in the course of its compu-
tation outputs the N numbers in sorted (say, descend-
ing) order, with success probability at least 2/3.

Theorem 13 Every bounded-error quantum circuit for
sorting N numbers that uses T queries and S qubits of
workspace satisfies T 2S = Ω

(
N3
)
.

Proof. We “slice” the circuit along the time-axis into
L = T/α

√
SN slices, each containing T/L = α

√
SN

queries. Each such slice has a number of output gates.
Consider any slice. Suppose it contains output gates
i, i + 1, . . . , i + k − 1, for i ≤ N/2, so it is supposed to
output the i-th up to i + k − 1-th largest elements of
its input. We want to show that k = O(S). If k ≤ S



then we are done, so assume k > S. We can use the
slice as a k-threshold algorithm on N/2 bits, as fol-
lows. For an N/2-bit input x, construct a sorting in-
put by taking i−1 copies of the number 2, the N/2 bits
in x, and N/2− i + 1 copies of the number 0, and ap-
pend their position behind the numbers.

Consider the behavior of the sorting circuit on this
input. The first part of the circuit has to output the
i− 1 largest numbers, which all start with 2. We con-
dition on the event that the circuit succeeds in this.
It then passes on an S-qubit state (possibly mixed) as
the starting state of the particular slice we are consid-
ering. This slice then outputs the k largest numbers in
x with probability at least 2/3. Now, consider an algo-
rithm that runs just this slice, starting with the com-
pletely mixed state on S-qubits, and that outputs 1 if
it finds k numbers starting with 1, and outputs 0 oth-
erwise. If |x| < k this new algorithm always outputs
0 (note that it can verify finding a 1 since its posi-
tion is appended), but if |x| = k then it outputs 1
with probability at least σ ≥ 2

3 · 2
−S , because the com-

pletely mixed state has “overlap” 2−S with the “good”
S-qubit state that would have been the starting state
of the slice in the run of the sorting circuit. On the
other hand, the slice has only α

√
SN < α

√
kN queries,

so by choosing α sufficiently small, Theorem 6 implies
σ ≤ 2−Ω(k). Combining our upper and lower bounds on
σ gives k = O(S). Thus we need L = Ω(N/S) slices, so
T = Lα

√
SN = Ω

(
N3/2/

√
S
)
. �

As mentioned, our tradeoff is achievable up to poly-
log factors [26]. Interestingly, the near-optimal algo-
rithm uses only a polylogarithmic number of qubits
and otherwise just classical memory. For simplicity we
have shown the lower bound for the case when the out-
puts have to be made in their natural ordering only,
but we can show the same lower bound for any order-
ing of the outputs that does not depend on the input
using a slightly different proof.

7. Time-Space Tradeoffs for Boolean
Matrix Products

First we give a lower bound on the time-space trade-
off for Boolean matrix-vector multiplication on classi-
cal machines. For reasons of space we omit the proofs in
this section and the next. They use the same approach
as before: slice the circuit into small slices, and use a
strong direct product theorem to show that each slice
can only produce few outputs (hence we need many
slices). Details may be found in our long version [1].

Theorem 14 There is a matrix A such that every clas-
sical bounded-error circuit that computes the Boolean

matrix-vector product Ab with T queries and space S =
o(N/ log N) satisfies TS = Ω

(
N2
)
.

The bound is tight if T measures queries to the in-
put. An absolutely analogous construction can be done
in the quantum case.

Theorem 15 There is a matrix A such that every quan-
tum bounded-error circuit that computes the Boolean
matrix-vector product Ab with T queries and space S =
o(N/ log N) satisfies T 2S = Ω

(
N3
)
.

This is tight within a log-factor (needed to improve the
success probability of Grover search).

Theorem 16 Every classical bounded-error circuit that
computes the Boolean matrix product AB with T queries
and space S satisfies TS = Ω

(
N3
)
.

While this is near-optimal for small S, it is proba-
bly not tight for large S, a likely tight tradeoff being
T 2S = Ω

(
N6
)
. It is also no improvement compared to

the average-case bounds of [4]. The application to the
quantum case is analogous.

Theorem 17 Every quantum bounded-error cir-
cuit that computes the Boolean matrix product AB with
T queries and space S satisfies T 2S = Ω

(
N5
)
.

If S = O(log N), then N2 applications of Grover can
compute AB with T = O

(
N2.5 log N

)
. Hence our

tradeoff is near-optimal for small S. We do not know
whether it is optimal for large S.

8. Quantum Communication-Space
Tradeoffs for Matrix Products

In this section we use the strong direct product
result for quantum communication (Theorem 12) to
prove tight communication-space tradeoffs.

Theorem 18 Every quantum bounded-error protocol in
which Alice and Bob have bounded space S and that com-
putes the Boolean matrix-vector product, satisfies C2S =
Ω
(
N3
)
.

Theorem 19 Every quantum bounded-error protocol in
which Alice and Bob have bounded space S and that
computes the Boolean matrix product, satisfies C2S =
Ω
(
N5
)
.

Theorem 20 There is a quantum bounded-error pro-
tocol with space S that computes the Boolean product
between a matrix and a vector within communica-
tion C = O((N3/2 log2 N)/

√
S). There is a quan-

tum bounded-error protocol with space S that computes
the Boolean product between two matrices within com-
munication C = O((N5/2 log2 N)/

√
S).



9. Open Problems

We mention some open problems. The first is to
determine tight time-space tradeoffs for Boolean ma-
trix product on both classical and quantum comput-
ers. Second, regarding communication-space tradeoffs
for Boolean matrix-vector and matrix product, we did
not prove any classical bounds that were better than
our quantum bounds. Klauck [27] recently proved clas-
sical tradeoffs CS2 = Ω

(
N3
)

and CS2 = Ω
(
N2
)

for
Boolean matrix product and matrix-vector product, re-
spectively, by means of a weak direct product theorem
for Disjointness. A classical strong direct product theo-
rem for Disjointness would imply optimal tradeoffs, but
we do not know how to prove this at the moment. Fi-
nally, it would be interesting to get any lower bounds
on time-space or communication-space tradeoffs for de-
cision problems in the quantum case, for example for
Element Distinctness [15, 5] or the verification of ma-
trix multiplication [17].
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[15] H. Buhrman, C. Dürr, M. Heiligman, P. Høyer, F. Mag-
niez, M. Santha, and R. de Wolf. Quantum algorithms
for element distinctness. In Proc. of 16th Conf. on Com-
putational Complexity, pages 131–137, 2001. quant-
ph/0007016.

[16] H. Buhrman, I. Newman, H. Röhrig, and R. de Wolf.
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A. Proofs from Section 3

Here we sketch the strong direct product theorem for
classical randomized algorithms that compute k inde-
pendent instances of ORn, referring to [1] for a more de-
tailed proof. By Yao’s principle, it is sufficient to prove
it for deterministic algorithms under a fixed hard input
distribution. Let Suct,µ(f) be the success probability of
the best algorithm for f under µ that queries ≤ t in-
put bits. We call an algorithm non-adaptive if, for each
of the k input blocks, the maximum number of queries
in that block is fixed before the first query. By induc-
tion, as in [41], we can prove:

Lemma 21 Let f : {0, 1}n → {0, 1} and µ be an in-
put distribution. Every non-adaptive deterministic algo-
rithm for f (k) under µk with T ≤ kt queries has success
probability σ ≤ Suct,µ(f)k.

Remark. A similar statement is not always true for
adaptive algorithms. Following [41], define h(x) = x1∨
(x2⊕. . .⊕xn). Clearly Suc 2

3 n,µ(h) = 3/4 for µ uniform.
By a Chernoff bound, Suc 2

3 nk,µk(h(k)) = 1−2−Ω(k), be-
cause approximately half of the blocks can be solved us-
ing just 1 query and the unused queries can be used to
answer exactly also the other half of the blocks.

However, the SDPT is valid for OR(k)
n under νk,

where ν(0n) = 1/2 and ν(ei) = 1/2n for ei an n-
bit string that contains a 1 only at the i-th posi-
tion. It is simple to prove that Sucαn,ν(ORn) = α+1

2 .
Non-adaptive algorithms for OR(k)

n under νk with αkn

queries thus have σ ≤ (α+1
2 )k = 2− log( 2

α+1 )k. We can
achieve any γ < 1 by choosing α sufficiently small. We
prove that adaptive algorithms cannot be much better.
Without loss of generality, we assume: (1) The adap-
tive algorithm is deterministic. (2) Whenever the algo-
rithm finds a 1 in some input block, it stops querying
that block. (3) The algorithm spends the same num-
ber of queries in all blocks where it does not find a
1. This is optimal due to the symmetry between the
blocks, and implies that the algorithm spends at least
as many queries in each “empty” input block as in each
“non-empty” block.

Lemma 22 If there is an adaptive T -query algorithm
A computing OR(k)

n under νk with success probability σ,
then there is a non-adaptive 3T -query algorithm A′ com-
puting it with success probability σ − 2−Ω(k).

Proof. Let Z be the number of empty blocks. E[Z] =
k/2 and, by a Chernoff bound, δ = Pr [Z < k/3] =
2−Ω(k). If Z ≥ k/3, then A spends at most 3T/k queries
in each empty block. Define non-adaptive A′ that
spends 3T/k queries in each block. Then A′ queries all



the positions that A queries, and maybe some more.
Let us compare the overall success probabilities of A
and A′:

σA = Pr [Z < k/3] · Pr [A succeeds | Z < k/3]
+ Pr [Z ≥ k/3] · Pr [A succeeds | Z ≥ k/3]
≤ δ · 1 + Pr [Z ≥ k/3] · Pr [A′ succeeds | Z ≥ k/3]
≤ δ + σA′ .

We conclude that σA′ ≥ σA−δ. (Remark. By replacing
the k/3-bound on Z by a βk-bound for some β > 0, we
can obtain arbitrary γ < 1 in the exponent δ = 2−γk,
while the number of queries of A′ becomes T/β.) �

Combining the two lemmas establishes Theorem 1.

B. Proofs from Section 4

We use three results about polynomials, also used
in [14]. The first is by Coppersmith and Rivlin [20,
p. 980] and gives a general bound for polynomials
bounded by 1 at integer points:

Theorem 23 (Coppersmith & Rivlin [20])
Every polynomial p of degree d ≤ n that has abso-
lute value |p(i)| ≤ 1 for all integers i ∈ [0, n], sat-
isfies |p(x)| < aebd2/n for all real x ∈ [0, n], where
a, b > 0 are universal constants (no explicit val-
ues for a and b are given in [20]).

The other two results concern the Chebyshev poly-
nomials Td, defined as in [40]:

Td(x) =
1
2

((
x +

√
x2 − 1

)d

+
(
x−

√
x2 − 1

)d
)

.

Td has degree d and its absolute value |Td(x)| is
bounded by 1 if x ∈ [−1, 1]. On the interval [1,∞),
Td exceeds all others polynomials with those two prop-
erties ([40, p.108] and [37, Fact 2]):

Theorem 24 If q is a polynomial of degree d such that
|q(x)| ≤ 1 for all x ∈ [−1, 1] then |q(x)| ≤ |Td(x)| for all
x ≥ 1.

Paturi [37, before Fact 2] proved

Lemma 25 (Paturi [37]) Td(1+µ) ≤ e2d
√

2µ+µ2 for
all µ ≥ 0.

Proof. For x = 1 + µ: Td(x) ≤ (x +
√

x2 − 1)d =

(1+µ+
√

2µ + µ2)d ≤ (1+2
√

2µ + µ2)d ≤ e2d
√

2µ+µ2

(using that 1 + z ≤ ez for all real z). �

These tools allow us to establish the key lemma.

Proof of Lemma 5. Divide p with remainder by∏k−1
j=0 (x− j) to obtain

p(x) = q(x)
k−1∏
j=0

(x− j) + r(x),

where d = deg(q) = D − k and deg(r) ≤ k − 1.
We know that r(x) = p(x) ∈ [−δ, δ] for all x ∈
{0, . . . , k − 1}. Decompose r as a linear combination
of polynomials ei, where ei(i) = 1 and ei(x) = 0 for
x ∈ {0, . . . , k − 1} − {i}:

r(x) =
k−1∑
i=0

p(i)ei(x) =
k−1∑
i=0

p(i)
k−1∏
j=0
j 6=i

x− j

i− j
.

We bound the values of r for all real x ∈ [0, N ] by

|r(x)| ≤
k−1∑
i=0

|p(i)|
i!(k − 1− i)!

k−1∏
j=0
j 6=i

|x− j|

≤ δ

(k − 1)!

k−1∑
i=0

(
k − 1

i

)
Nk ≤ δ(2N)k

(k − 1)!
,

|r(k)| ≤ δk2k−1.

This implies the following about the values of q:

|q(k)| ≥ (σ − δk2k−1)/k!

|q(i)| ≤ (i− k)!
i!

(
1 + δ +

δ(2N)k

(k − 1)!

)
for i ∈ {k, . . . , N}

In particular:

|q(i)| ≤ C−k

(
1 + δ +

δ(2N)k

(k − 1)!

)
= A

for i ∈ {k + C, . . . , N}

Theorem 23 implies that there are a, b > 0 such that

|q(x)| ≤ A · aebd2/(N−k−C) = B

for all real x ∈ [k+C,N ]. We now divide q by B to nor-
malize it, and rescale the interval [k + C,N ] to [1,−1]
to get a degree-d polynomial t satisfying

|t(x)| ≤ 1 for all x ∈ [−1, 1]
t(1 + µ) = q(k)/B for µ = 2C/(N − k − C)

Since t cannot grow faster than the degree-d Cheby-
shev polynomial, we get

t(1 + µ) ≤ Td(1 + µ) ≤ e2d
√

2µ+µ2 .

Combining our upper and lower bounds on t(1 + µ):

(σ − δk2k−1)/k!

C−k
(
1 + δ + δ(2N)k

(k−1)!

)
aebd2/(N−k−C)

≤ e2d
√

2µ+µ2
.

Rearranging gives the bound. �


