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Abstract

We reprove that the approximate degree of the OR function onn bits isΩ(
√

n). We consider a linear program
which is feasible if and only if there is an approximate polynomial for a given function, and apply the duality theory.
The duality theory says that the primal program has no solution if and only if its dual has a solution. Therefore one
can prove the nonexistence of an approximate polynomial by exhibiting a dual solution, coined thedual polynomial.
We construct such a polynomial.

1 Introduction

We study the approximation of Boolean functions by real-valued polynomials. This line of research was initiated by
Minsky and Papert [MP68]. Ann-bit Boolean functionf is represented by a multivariate polynomialp(x1, . . . , xn).
Nisan and Szegedy [NS94] defined the approximate degree of a functionf under thè ∞-norm, denoted̃deg(f), as
the smallest degree for which there exists a polynomial that is close to the function pointwise. Several complexity
measures have been since shown to be lower-bounded in terms ofd̃eg(f): circuit size [Bei93], or quantum query
complexity [BBC+01]. Consider the OR function onn bits. Nisan and Szegedy [NS94] showed that̃deg(ORn) =
Θ(
√

n), and Paturi [Pat92] extended their bound to all symmetric functions.
The existence of an approximate polynomial can be described by a linear program; let us coin it the primal program.

Using the duality theory of linear programming, one can show the non-existence of an approximate polynomial for a
functionf by exhibiting a solution to its dual program, a so-calleddual polynomialfor f . Recently, several papers
have appeared that use dual polynomials to prove good communication complexity lower bounds: Sherstov [She07]
and Shi and Zhu [SZ07] show two-party quantum communication lower bounds, and Lee and Shraibman [LS08] and
Chattopadhyay and Ada [CA08] show multi-party randomized communication lower bounds in the number-on-the-
forehead model. The basic idea of these papers is as follows. One defines a specialpattern matrix(or tensor in the
multi-party case) whose entries are values of a certain polynomial. The structure of the pattern matrix allows one to
relate properties of the polynomial to properties of the matrix, such as its trace norm. The pattern matrix formed from
the dual polynomial forms a witness to the large trace norm of the matrix. The communication complexity is then
lower-bounded in terms of the trace norm. None of these papers actually presents an explicit dual polynomial for any
function; they only use its existence and some inequalities guaranteed by the duality principle from the known bounds
on the approximate degree.

It is natural to ask what a dual polynomial looks like for the simplest functions. In this short note, we address this
question and present an asymptotically optimal dual polynomial for the OR function. Our proof extends the ideas of
Buhrman and Szegedy [BS03].

∗Most of the work conducted while at CWI, Amsterdam, in February 2003.
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2 Preliminaries

2.1 Symmetric polynomials

We represent Boolean functions by polynomials in the Fourier basis, where+1 corresponds to the logical value0
(false) and−1 to the logical value1 (true). In this basis, multiplication corresponds to the exclusive OR. We say that
f : {±1}n → {±1} is asymmetricfunction, if f(x) = f(xσ) for every permutationσ ∈ Sn andx ∈ {±1}n, where
xσ denotes aσ-permuted version ofx, with (xσ)i = xσ(i).

Let p : {±1}n → < be a polynomial in variablesx1, . . . , xn. Sincex2
i = 1, we can restrict ourselves to

multilinear polynomials, where each variable appears with degree at most 1. We say thatp hasdegreed andpure high
degreed′, if each term inp is a product of at mostd and at leastd′ variables. We say thatp is anε-approximation
for a functionf , if |p(x) − f(x)| ≤ ε for everyx ∈ {±1}n. If p is anε-approximation of a symmetric function
f , then there exists a symmetric polynomialp′ with the same degree, pure high degree, and approximation factor:
p′(x) = 1

n!

∑
σ∈Sn

p(xσ).
Let [n] = {0, 1, . . . , n}. Given a symmetric functionf : {±1}n → {±1}, one can define a single-variate function

F : [n] → {±1} such thatf(x) = F (|x|), where|x| = n−(x1+···+xn)
2 is the Hamming weight ofx, i.e., the number

of minuses inx. Analogously, following [MP68], given a symmetric multilinear polynomialp : {±1}n → <, one can
define asingle-variatepolynomialP : [n] → < of the same degree such that

P (k) = p(−1, . . . ,−1︸ ︷︷ ︸
k

, +1, . . . ,+1︸ ︷︷ ︸
n−k

) for all k ∈ [n],

p = P

(
n− (x1 + · · ·+ xn)

2

)
mod(x2

1 − 1), . . . , mod(x2
n − 1).

Note that the pure high degree ofp does not correspond to the smallest degree of ak-term inP (k). When we talk about
the pure high degree of a single-variate polynomial, we mean the pure high degree of its corresponding multilinear
polynomial.

Let p, q : {±1}n → <. Define ascalar productasp · q =
∑

x∈{±1}n p(x)q(x). This induces a scalar product

P ·Q =
∑n

i=0

(
n
i

)
P (i)Q(i) on the space of symmetric polynomials. Similarly, the`1-norm‖p‖1 =

∑
x∈{±1}n |p(x)|

induces aǹ1-norm‖P‖1 =
∑n

i=0

(
n
i

)
|P (i)|.

Let p : {±1}n → < be a multilinear polynomial of degreed and pure high degreed′, and considerq(x) =
p(x) · (x1 · · ·xn) mod (x2

i − 1). In the functional interpretation,q(x) equalsp(x) multiplied by the parity ofx.
Thanks to the term cancellationx2

i = 1, each term inq corresponds to the complement of a term inp, and therefore
q has degreen − d′ and pure high degreen − d. Now, assume thatp (and thus alsoq) are symmetric, and consider
their corresponding single-variate polynomialsP,Q. ThenQ(k) = P (k) · (−1)k, and the degree ofP corresponds to
n minus the pure high degree ofQ and vice versa.

2.2 Linear program for polynomial approximation

Theorem 1. A total Boolean functionf : {±1}n → {±1} hasε-approximate degree at leastd if and only if there
exists a polynomialb : {±1}n → < with pure high degreed such that‖b‖1b·f < 1

ε .

Proof. f can beε-approximated by a polynomial of degreed−1 is equivalent to the feasibility of the following primal
linear program. Consider theFourier basison the space of multilinear polynomials:{χS}S⊆{1,...,n}, whereχS(x) =∏

i∈S xi. Let F = {χS(x)}x,S denote the Fourier transform overZn
2 , indexed by{±1}n andS ⊆ {1, . . . , n}, and let

a denote a vector of Fourier coefficients.

Fa ≥ f − ε

Fa ≤ f + ε

aS = 0 for |S| ≥ d
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The primal program is unfeasible if and only if its dual is feasible. The dual program is as follows.

(b+ − b−) · f > (b+ + b−) · ε
(b+ − b−)F = c

b+, b− ≥ 0
cS = 0 for |S| < d

⇐⇒
b · f > |b| · ε
bF = c
cS = 0 for |S| < d

We can assume thatb+ andb− of the optimal solution are disjoint, i.e.,b+(x)b−(x) = 0 for eachx, otherwise we
could lower the right-hand side of the first inequality by subtracting the same constantmin(b+(x), b−(x)) > 0 from
bothb+(x) andb−(x), and the remaining expressions would stay unchanged. Letb = b+ − b− and|b| = b+ + b−.
The constraintsbF = c andcS = 0 for |S| < d say thatb has pure high degreed. The dual is feasible if and only if
there exists such ab with b · f > |b| · ε = ε‖b‖1.

Note that iff is symmetric, then it suffices to look for a dual polynomialb in the space of symmetric polynomials.
Let us reformulate the condition in the language of single-variate polynomials.

Corollary 2. A total symmetric Boolean functionF : [n] → {±1} hasε-approximate degree at leastd if and only if
there exists a polynomialB : [n] → < with pure high degreed such that‖B‖1B·F < 1

ε .

3 Dual polynomial for OR

First, we define a certain low-degree polynomialP and show that its norm‖P‖1 is not too large compared to its value
P (0). This polynomial will be crucial for defining the dual polynomial for OR. The design of our polynomial comes
from extending the ideas of Buhrman and Szegedy [BS03].

Definition 3. Letm = b
√

nc and letS = {i2 : i ∈ [m]} ∪ {2} denote the set containing the integer squares up ton
and the number2. Define a polynomial

P (x) = 2(−1)n−m−1 m!2

n!
·

∏
i∈[n]−S

(x− i) .

The multiplicative factor ofP is chosen such thatP (0) = 1. The degree ofP is n−m− 1.

Lemma 4. For every pair of integersk,m with k ≤ m, m!2

(m+k)!(m−k)! ≤ 1.

Proof. The term is a product of numbers that are all smaller than 1:

m!2

(m + k)!(m− k)!
=

m(m− 1) . . . (m− k + 1)
(m + k)(m + k − 1) . . . (m + 1)

=
k∏

i=1

(
1− k

m + i

)
≤ 1

Lemma 5.
(
n
2

)
|P (2)| ≤ 12 and

(
n
k2

)
|P (k2)| ≤ 8

k2 for everyk = 1, 2, . . . ,m.

Proof. First, we substitutex = 2 into |P (x)| and rewrite the product overi ∈ [n] − S as the ratio of two products,
one overi ∈ [n] − {0, 1, 2} and one overi ∈ S − {0, 1, 2}. We then pull thej = 2 term out of the product in the
denominator, use|j2 − 2| < j2 − 4, and apply Lemma 4.

|P (2)| = 2
m!2

n!
(n− 2)!

2
∏m

j=3 |2− j2|
<

m!2

n!
(n− 2)!∏m

j=3(j2 − 4)

=
m!2

n!
(n− 2)!∏m

j=3(j + 2)(j − 2)
=

1
n(n− 1)

m!2
(m+2)!

4! (m− 2)!
≤ 4!

n(n− 1)
=

12(
n
2

) .
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Second, we substitutex = k2 to |P (x)| and rewrite the product overi ∈ [n]− S as the ratio of two products, one
overi ∈ [n]− {k2} and one overi ∈ S − {k2}. The termi = k2 does not appear in any of products, because it is0.

|P (k2)| = 2
m!2

n!
·

∏
i∈[n]

i 6=k2

|k2 − i|

|k2 − 2| ·
∏

j∈[m]
j 6=k

(k + j)|k − j|

= 2
m!2

n!
· k2!(n− k2)!

(k + m)!
2k · (k − 1)! · k!(m− k)!

· 1
|k2 − 2|

= 4 · k2!(n− k2)!
n!

· m!2

(m + k)!(m− k)!
· 1
|k2 − 2|

Apply Lemma 4 and|k2 − 2| ≥ k2/2, which holds for all integersk ≥ 1.

≤ 4(
n
k2

) · 1
|k2 − 2|

≤ 4(
n
k2

) · 1
k2/2

≤ 8(
n
k2

)
k2

.

Note that if we did not include the number 2 intoS, in Definition 3, then the upper bound on|P (k2)| would be much
weaker, without the factor of1/k2.

Now we show that a constant fraction of the norm ofP comes from the termP (0) = 1.

Theorem 6. ‖P‖1 < 27.

Proof. First, use the fact thatP (i) = 0 for i ∈ [n]− S, non-square integersi other than 2.

‖P‖1 =
n∑

i=0

(
n

i

)
|P (i)| =

∑
i∈S

(
n

i

)
|P (i)|

= P (0) +
(

n

2

)
P (2) +

m∑
k=1

(
n

k2

)
|P (k2)|

Now, useP (0) = 1, Lemma 5, and
∑

k
1
k2 = π2

6 .

≤ 13 + 8
m∑

k=1

1
k2

< 13 + 8
π2

6
< 27.

Finally, we are ready to present the dual polynomial for OR.

Theorem 7. The 1
14 -approximate degree of OR onn bits is at least

√
n.

Proof. Consider the polynomial
Q(k) = (−1)kP (k) ,

that isP from Definition 3 multiplied by parity. We show thatQ is a good dual polynomial for OR. First, the pure high
degree ofQ is n− (n−m− 1) = m + 1 >

√
n. Second, we compute the ratio from Corollary 2. SinceOR(0) = 1

andOR(k) = −1 for k ≥ 1, Q ·OR = 2Q(0)−Q · 1 = 2Q(0), becauseQ has no constant coefficient. Now, we use
Theorem 6 to upper-bound the numerator and conclude

‖Q‖1
Q ·OR

=
‖P‖1
2P (0)

<
27
2

< 14 .
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4 Open problems

The approximate degree of thet-threshold function onn bits isΘ(
√

t(n− t)) [Pat92]. It would be interesting to find
an explicit dual polynomial for the threshold function. A good candidate may beQ(k) = (−1)kP (k) with

P (x) =
∏

i∈[n]−T

(x− t− i) ,

whereT is a set of integers that can be written ask2 − `2, wherek ∈ [b
√

n− tc] and ` ∈ [b
√

tc]. Note that
|T | = Θ(

√
t(n− t)).

The approximate degree of the two-level AND-OR tree onn bits (with all gates of fan-in
√

n) is only known to
lie betweenO(

√
n) andΩ( 3

√
n). Both bounds have been obtained through quantum algorithms, as follows. Consider

aT -query quantum algorithm. Its acceptance probability on inputx can be expressed as a2T -degree polynomialp in
the variablesx1, . . . , xn [BBC+01]. If the algorithm computes a functionf with bounded error, thenp approximates
f . Therefore quantum algorithms give approximate polynomials, and approximate degree lower bounds give quantum
query lower bounds. For the two-level AND-OR tree, the upper bound is via a quantum search algorithm on noisy
inputs [HMW03] and the lower bound is via a reduction from the element distinctness problem [AS04]. Can one
compute the approximate degree of the AND-OR tree by showing a good dual polynomial?
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