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ABSTRACT
We prove a tight quantum query lower bound Ω(nk/(k+1))
for the problem of deciding whether there exist k numbers
among n that sum up to a prescribed number, provided that
the alphabet size is sufficiently large.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Computa-
tions on discrete structures; H.2.4 [Database Manage-
ment]: Systems—Query processing

General Terms
Algorithms

Keywords
Quantum query complexity, Knapsack packing problem, Or-
thogonal arrays

1. INTRODUCTION
Two main techniques for proving lower bounds on quan-

tum query complexity are the polynomial method [6] devel-
oped by Beals et al. in 1998, and the adversary method [2]
developed by Ambainis in 2000. Both techniques are incom-
parable. There are functions with adversary bound strictly
larger than polynomial degree [3], as well as functions with
the reverse relation.

One of the examples of the reverse relation is exhibited by
the element distinctness function. The input to the function
is a string of length n of symbols in an alphabet of size q,
i.e., x = (xi) ∈ [q]n. We use notation [q] to denote the set
{1, . . . , q}. The element distinctness function evaluates to 0
if all symbols in the input string are pairwise distinct, and
to 1 otherwise.

The quantum query complexity of element distinctness is
O(n2/3) with the algorithm given by Ambainis [5]. The tight
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lower bounds were given by Aaronson and Shi [1], Kutin [14]
and Ambainis [4] using the polynomial method.

The adversary bound, however, fails for this function.
The reason is that the function has 1-certificate complex-
ity 2, and the so-called certificate complexity barrier [17,
18] implies that for any function with 1-certificate complex-
ity bounded by a constant, the adversary method fails to
achieve anything better than Ω(

√
n).

In 2006 a stronger version of the adversary bound was
developed by Høyer et al. [12]. This is the negative-weight
adversary lower bound defined in Section 2. Later it was
proved to be optimal by Reichardt et al. [16, 15]. Although
the negative-weight adversary lower bound is known to be
tight, it has almost never been used to prove lower bounds
for explicit functions. The vast majority of lower bounds
by the adversary method used the old nonnegative-weight
version of this method. But since the polynomial method
is known to be non-tight, a better understanding of the
negative-weight adversary method would be very beneficial.
In the sequel, we consider the negative-weight adversary
bound only, and we will omit the adjective“negative-weight”.

In this paper we use the adversary method to prove a
lower bound for the following variant of the knapsack pack-
ing problem. Let G be a finite Abelian group, and t ∈ G
be its arbitrary element. For a positive integer k, the k-
sum problem consists in deciding whether the input string
x1, . . . , xn ∈ G contains a subset of k elements that sums up
to t. We assume that k is an arbitrary but fixed constant.
The main result of the paper is the following

Theorem 1. For a fixed k, the quantum query complexity
of the k-sum problem is Ω(nk/(k+1)) provided that |G| ≥ nk.

Clearly, the 1-certificate complexity of the k-sum problem
is k, hence, it is also subject to the certificate complexity
barrier that, for a variable k, states the nonnegative-weight
adversary cannot prove a better lower bound than Ω(

√
kn).

The result of Theorem 1 is tight thanks to the quantum
algorithm based on quantum walks on the Johnson graph [5].
This algorithm was first designed to solve the k-distinctness
problem. This problem asks for detecting whether the input
string x ∈ [q]n contains k elements that are all equal. Soon
enough it was realized that the same algorithm works for any
function with 1-certificate complexity k [11], in particular,
for the k-sum problem. The question of the tightness of this
algorithm remained open for a long time. It was known to
be tight for k = 2 due to the lower bound for the element
distinctness problem. Now we know that it is not optimal for
the k-distinctness problem if k > 2 [8]. However, Theorem 1
shows that, for every k, quantum walk on the Johnson graph
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is optimal for some functions with 1-certificate complexity k.
Finally, we note that the k-sum problem is also interesting
because of its applications in quantum Merkle puzzles [9,
13].

Actually, we get Theorem 1 as a special case of a more
general result we are about to describe. The following is a
special case of a well-studied combinatorial object:

Definition 1. Assume T is a subset of [q]k of size qk−1. We
say that T is an orthogonal array of length k iff, for every
index i ∈ [k] and for every vector x1, . . . , xi−1, xi+1, . . . , xk ∈
[q], there exists exactly one xi ∈ [q] such that (x1, . . . , xk) ∈
T .

For x = (xi) ∈ [q]n and S ⊆ [n] let xS denote the projec-
tion of x on S, i.e., the vector (xs1 , . . . , xs`) where s1, . . . , s`
are the elements of S in the increasing order.

Assume each subset S of [n] of size k is equipped with an
orthogonal array TS . The k-orthogonal array problem con-
sists in finding an element of any of the orthogonal arrays in
the input string. More precisely, the input x ∈ [q]n evaluates
to 1 iff there exists S ⊆ [n] of size k such that xS ∈ TS .

Consider the following two examples:

Example 1. Let G be a commutative group with q ele-
ments and t ∈ G. T = {x ∈ Gk :

∑k
i=1 xi = t} is an

orthogonal array of length k. This choice corresponds to the
k-sum problem of Theorem 1.

Example 2. T = {x ∈ [q]2 : x1 = x2} is an orthogonal ar-
ray of length 2. This corresponds to the element distinctness
problem from [7].

Theorem 2. For a fixed k and any choice of the orthog-
onal arrays TS, the quantum query complexity of the k-
orthogonal array problem is Ω(nk/(k+1)) provided that q ≥
nk. The constant behind big-Omega depends on k, but not
on n, q, or the choice of TS.

The orthogonal array condition specifies that even if an
algorithm has queried k − 1 elements out of any k-tuple,
it has the same information whether this k-tuple is a 1-
certificate as if it has queried no elements out of it. Because
of this, the search for a k-tuple as a whole entity is the best
the quantum algorithm can do. Our proof of Theorem 2 is
a formalization of this intuition.

Let us elaborate on the requirement on the size of the al-
phabet. It is easy to see that some requirement is necessary.
Indeed, the k-sum problem can be solved in O(

√
n) queries

if the size of G is O(1), using the Grover search to find up
to k copies of every element of G in the input string, and
trying to construct t out of what is found. In some cases,
e.g., when t is the identity element and k equals the order of
the group, the problem becomes trivial if n is large enough.

The requirement on the size of the alphabet for the el-
ement distinctness problem is a subtle issue. The lower
bounds by Aaronson and Shi [1] and Kutin [14] require the
size of the alphabet to be at least Ω(n2) that is the same
that gives Theorem 2. However, later Ambainis [4] showed
that the lower bound remains the same even if one allows the
alphabet of size n. Reducing the alphabet size in Theorem 2
is one of our open problems.

2. ADVERSARY LOWER BOUND
In the paper we are interested in the quantum query com-

plexity of solving the orthogonal array problem. For the
definitions and main properties of quantum query complex-
ity refer to, e.g., Ref. [10]. For the purposes of our paper, it
suffices to work with the definition of the adversary bound
we give in this section.

Compared to the original formulation of the negative-
weighted adversary bound [12], our formulation has two dif-
ferences. Firstly, in order to simplify notations we call an
adversary matrix a matrix with rows labelled by positive in-
puts, and the columns—by the negative ones. It is a quarter
of the original adversary matrix that completely specifies the
latter. Secondly, due to technical reasons, we allow several
rows to be labelled by the same positive input. All this is
captured by the following definition and theorem.

Definition 2. Let f be a function f : D → {0, 1} with do-

main D ⊆ [q]n. Let D̃ be a set of pairs (x, a) with the
property that the first element of each pair belongs to D,

and D̃i = {(x, a) ∈ D̃ : f(x) = i} for i ∈ {0, 1}. An ad-

versary matrix for the function f is a non-zero real D̃1×D̃0

matrix Γ. And, for i ∈ [n], let ∆i denote the D̃1×D̃0 matrix
defined by

∆i[[(x, a), (y, b)]] =

{
0, xi = yi;

1, otherwise.

Theorem 3 (Adversary bound). In the notations of
Definition 2, Q2(f) = Ω(Adv±(f)), where

Adv±(f) = sup
Γ

‖Γ‖
maxi∈n ‖Γ ◦∆i‖

(1)

with the maximization over all adversary matrices for f , ‖·‖
is the spectral norm, and Q2(f) is the quantum query com-
plexity of f .

Proof. In the original negative-weight adversary bound
paper [12], Eq. (1) is proven when Γ is a real symmetricD×D
matrix with the property Γ[[x, y]] = 0 if f(x) = f(y), and
∆i are modified accordingly. We describe a reduction from
the adversary matrix in our definition, Γ, to the adversary
matrix Γ′ in the definition of [12]. Also, let ∆′i be the D×D
matrix with ∆′i[[x, y]] = 1 if xi 6= yi, and 0, otherwise.

At first, define Γ as

Γ =

(
0 Γ∗

Γ 0

)
.

Note that ‖Γ‖ = ‖Γ‖, and the spectrum of Γ is symmetric.
Also, for all i, ‖Γ ◦ ∆i‖ = ‖Γ ◦ ∆i‖, where ∆i is defined
similarly to Γ.

Let δ = (δx,a) be the normalized eigenvalue ‖Γ‖ eigenvec-
tor of Γ. For all x, y ∈ D, let:

δ′x =

√ ∑
a:(x,a)∈D̃

δ2
x,a

and

Γ′[[x, y]] =
1

δ′xδ′y

∑
a:(x,a)∈D̃
b:(y,b)∈D̃

δx,aδy,bΓ[[(x, a), (y, b)]].

Then it is easy to see that δ′ = (δ′x) satisfies ‖δ′‖ = 1 and
(δ′)∗Γ′δ′ = δ∗Γδ = ‖Γ‖, hence, ‖Γ′‖ ≥ ‖Γ‖.
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And vice versa, if ε′ is such that ‖ε′‖ = 1 and (ε′)∗(Γ′ ◦
∆′i)ε

′ = ‖Γ′ ◦∆′i‖, let εx,a = δx,aε
′
x/δ
′
x. Again, ‖ε‖ = 1 and

ε∗(Γ◦∆i)ε = (ε′)∗(Γ′ ◦∆′i)ε
′, hence, ‖Γ′ ◦∆′i‖ ≤ ‖Γ◦∆i‖ =

‖Γ ◦∆i‖.
This means that Γ′ provides at least as good adversary

lower bound as Γ.

3. PROOF
In this section we prove Theorem 2 using the adversary

lower bound, Theorem 3. The idea of our construction is to
embed the adversary matrix Γ into a slightly larger matrix

Γ̃ with additional columns. Then Γ ◦ ∆i is a submatrix of
Γ̃ ◦∆i, hence, ‖Γ ◦∆i‖ ≤ ‖Γ̃ ◦∆i‖. (In this section we use
∆i to denote all matrices defined like in Definition 2, with
the size and the labels of the rows and columns clear from
the context.) It remains to prove that ‖Γ̃‖ is large, and that

‖Γ‖ is not much smaller than ‖Γ̃‖.
The proof is organized as follows. In Section 3.1 we define

Γ̃ in dependence on parameters αm, in Section 3.2 we ana-

lyze its norm, in Sections 3.3 and 3.4 calculate ‖Γ̃ ◦∆i‖, in
Section 3.5 optimize αms, and, finally, in Section 3.6 prove
that the norm of the true adversary matrix Γ is not much

smaller than the norm of Γ̃.

3.1 Adversary matrix
Matrix Γ̃ consists of

(
n
k

)
matrices G̃s1,...,sk stacked one on

another for all possible choices of S = {s1, . . . , sk} ⊂ [n]:

Γ̃ =


G̃1,2,...,k

G̃1,2,...,k−1,k+1

. . .

G̃n−k+1,n−k+2,...,n

 . (2)

Each G̃S is a qn−1× qn matrix with rows indexed by inputs
(x1, . . . , xn) ∈ [q]n such that xS ∈ TS , and columns indexed
by all possible inputs (y1, . . . , yn) ∈ [q]n.

We say a column with index y is illegal if yS ∈ TS for

some S ⊆ [n]. After removing all illegal columns, G̃S will
represent the part of Γ with the rows indexed by the inputs
having an element of the orthogonal array on S. Note that
some positive inputs appear more than once in Γ. More
specifically, an input x appears as many times as many ele-
ments of the orthogonal arrays it contains.

This construction may seem faulty, because there are el-
ements of [q]n that are used as labels of both rows and

columns in Γ̃, and hence, it is trivial to construct a ma-

trix Γ̃ such that the value in (1) is arbitrarily large. But we

design Γ̃ in a specifically restrictive way so that it still is a
good adversary matrix after the illegal columns are removed.

Let Jq be the q × q all-ones matrix. Assume e0, . . . , eq−1

is an orthonormal eigenbasis of Jq with e0 = 1/
√
q(1, . . . , 1)

being the eigenvalue q eigenvector. Consider the vectors of
the following form:

v = ev1 ⊗ ev2 ⊗ · · · ⊗ evn , (3)

where vi ∈ {0, . . . , q−1}. These are eigenvectors of the Ham-
ming Association Scheme on [q]n. For a vector v from (3),
the weight |v| is defined as the number of non-zero entries in

(v1, . . . , vn). Let E
(n)
k , for k = 0, . . . , n, be the orthogonal

projector on the space spanned by the vectors from (3) hav-
ing weight k. These are the projectors on the eigenspaces of

the association scheme. Let us denote Ei = E
(1)
i for i = 0, 1.

These are q× q matrices. All entries of E0 are equal to 1/q,
and the entries of E1 are given by

E1[[x, y]] =

{
1− 1/q, x = y;

−1/q, x 6= y.

Elements of S in G̃S should be treated differently from
the rest of the elements. For them, we define a qk−1 × qk
matrix FS . It has rows labelled by the elements of TS and
columns by the elements of [q]k, and is defined as follows.

Definition 3. Let

E
(k)
<k = I − E(k)

k =

k−1∑
i=0

E
(k)
i =

∑
u=eu1⊗···⊗euk

|u|<k

uu∗

be the projector onto the subspace spanned by the vectors
of less than maximal weight. Let FS be

√
q times the sub-

matrix of E
(k)
<k consisting of only the rows from TS .

Finally, we define Γ̃ as in (2) with G̃S defined by

G̃S =

n−k∑
m=0

αmFS ⊗ E(n−k)
m , (4)

where FS acts on the elements in S and Em acts on the
remaining n− k elements. Coefficients αm will be specified
later.

3.2 Norm of Γ̃

Lemma 1. Let Γ̃ be like in (2) with G̃S defined as in (4).
Then

(a) ‖Γ̃‖ = Ω(α0n
k/2),

(b) ‖Γ̃‖ = O(maxm αmn
k/2).

Proof. Fix a subset S and denote T = TS and F = FS .
Recall that E

(k)
<k is the sum of uu∗ over all u = eu1⊗· · ·⊗euk

with at least one uj equal to 0, and F is the restriction of

E
(k)
<k to the rows in T .

For u = eu1 ⊗ · · · ⊗ euk and ` such that u` = 0, let u(`)

denote the
√
q multiple of u restricted to the elements in

T . The reason for the superscript is that we consider the
following process of obtaining u(`): we treat T as [q]k−1

by erasing the `-th element in any string of T , then u(`)

coincides on this set with u with the `-th term removed.
In this notation, the contribution from uu∗ to F equals

u(`u)u∗, where `u is any position in u containing e0. In
general, we do not know how u(`)s relate for different `.
However, we know that, for a fixed `, they are all orthogonal;
and for any `, (e⊗k

0 )(`) is the vector 1/
√
qk−1(1, . . . , 1).

Let us start with proving (a). We estimate ‖Γ̃‖ from below

as w∗Γ̃w′, where w and w′ are unit vectors with all elements

equal. In other words, ‖Γ̃‖ is at least the sum of all its entries

divided by
√(

n
k

)
q2n−1. In order to estimate the sum of the

entries of Γ̃, we rewrite (4) as

G̃S = α0e
⊗(n−1)
0 (e⊗n

0 )∗ +
∑
u,v

α|v|(u
(`u) ⊗ v)(u⊗ v)∗ , (5)

where the summation is over all u and v such that at least
one of them contains an element different from e0. The sum
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of all entries in the first term of (5) is α0q
n−1/2. The sum of

each column in each of (u(`u)⊗ v)(u⊗ v)∗ is zero because at

least one of u(`u) or v sums up to zero. By summing over all(
n
k

)
choices of S, we get that ‖Γ̃‖ ≥ α0

√(
n
k

)
= Ω(α0n

k/2).

In order to prove (b), express FS as
∑k

`=1 F
(`)
S with F

(`)
S =∑

u∈U`
u(`)u∗. Here {U`} is an arbitrary decomposition of

all u such that U` contains only u with e0 in the `-th position.

Define G̃
(`)
S as in (4) with FS replaced by F

(`)
S , and Γ̃(`) as

in (2) with G̃S replaced by G̃
(`)
S .

Since all u(`)s are orthogonal for a fixed `, we get that

(G̃(`))∗G̃(`) =
∑

u∈U`,v

α2
|v|(u⊗ v)(u⊗ v)∗,

thus ‖(G̃(`))∗G̃(`)‖ = maxm α2
m. By the triangle inequality,

‖Γ̃(`)‖2 =
∥∥∥(Γ̃(`))∗Γ̃`

∥∥∥ =

∥∥∥∥∥∑
S

(G̃
(`)
S )∗G̃

(`)
S

∥∥∥∥∥ ≤
(
n

k

)
max
m

α2
m.

Since Γ̃ =
∑k

`=1 Γ̃(`), another application of the triangle
inequality finishes the proof of (b).

3.3 Action of ∆1

The adversary matrix is symmetric in all input variables
and hence it suffices to only consider the entry-wise mul-

tiplication by ∆1. Precise calculation of ‖Γ̃ ◦ ∆1‖ is very
tedious, but one can get an asymptotically tight bound us-

ing the following trick. Instead of computing Γ̃◦∆1 directly,

we arbitrarily map Γ̃
∆17−→ Γ̃1 such that Γ̃1 ◦ ∆1 = Γ̃ ◦ ∆1,

and use the inequality ‖Γ̃1 ◦∆1‖ ≤ 2‖Γ̃1‖ that holds thanks
to γ2(∆1) ≤ 2 [15]. In other words, we change arbitrarily
the entries with x1 = y1. We use the mapping

E0
∆17−→ E0 , E1

∆17−→ −E0 , I
∆17−→ 0 . (6)

The projector E
(k)
<k is mapped by ∆1 as

E
(k)
<k = I − E(k)

k

∆17−→ E0 ⊗ E⊗(k−1)
1 .

It follows that

F
∆17−→ e∗0 ⊗ E

⊗(k−1)
1 =

∑
u=eu1

⊗···⊗euk
u0=0,|u|=k−1

u(1)u∗ , (7)

where u(1) is defined like in the proof of Lemma 1.

3.4 Norm of Γ̃1

Lemma 2. Let Γ̃ be like in (2) with G̃T defined as in (4),

and map Γ̃
∆17−→ Γ̃1 and G̃T

∆17−→ (G̃T )1 using (6) and (7).
Then

‖Γ̃1‖ = O(max
m

(max(αmm
(k−1)/2, (αm − αm+1)nk/2))).

Proof. We have ‖Γ̃1‖2 = ‖Γ̃∗1Γ̃1‖ = ‖
∑

S(G̃S)∗1(G̃S)1‖.
Decompose the set of all possible k-tuples of indices into S1∪
S2, where S1 are k-tuples containing 1 and S2 are k-tuples
that don’t contain 1. We upper-bound the contribution of

S1 to ‖Γ̃1‖2 by maxm α2
m

(
m+k−1

k−1

)
and the contribution of

S2 by maxm(αm − αm+1)2k
(
n−1
k

)
, and apply the triangle

inequality.

Let v = ev1 ⊗ · · · ⊗ evn with |v| = m + k − 1, and let
S ∈ S1. Then, by (7),

(G̃S)1v =

{
αmv

(1), v1 = 0 and |vS | = k − 1,
0, otherwise.

Here v(1) = ev2 ⊗ · · · ⊗ evn is v with the first term removed
and vS =

⊗
s∈S evs .

For different v, these are orthogonal vectors, and hence v

is an eigenvector of (G̃S)∗1(G̃S)1 of eigenvalue α2
m if v1 = 0

and |vS | = k − 1, and of eigenvalue 0 otherwise. For every
v with v1 = 0 and |v| = m + k − 1, there are

(
m+k−1

k−1

)
sets

S ∈ S1 such that (G̃S)1v 6= 0. Thus, the contribution of S1

is as claimed.
Now consider an S ∈ S2, that means 1 6∈ S.

G̃S =

n−k∑
m=0

αmFS ⊗ E(n−k)
m

=

n−k∑
m=0

αmFS

⊗(E0 ⊗ E(n−k−1)
m + E1 ⊗ E(n−k−1)

m−1 )

∆17−→
n−k∑
m=0

αmFS ⊗ E0 ⊗ (E(n−k−1)
m − E(n−k−1)

m−1 )

= (G̃S)1 =

n−k∑
m=0

(αm − αm+1)FS ⊗ E0 ⊗ E(n−k−1)
m .

Therefore (G̃S)1 is of the same form as G̃S , but with coef-
ficients (αm − αm+1) instead of αm and on one dimension
less. We get the required estimate from Lemma 1(b).

Since k = O(1), we get the claimed bound.

3.5 Optimization of αm

To maximize the adversary bound, we maximize ‖Γ̃‖ while

keeping ‖Γ̃1‖ = O(1). That means, we choose the coeffi-

cients {αm} to maximize α0n
k/2 (Lemma 1) so that, for ev-

ery m, αm ≤ m(1−k)/2 and αm ≤ αm+1 +n−k/2 (Lemma 2).

For every r ∈ [n], α0 ≤ αr + rn−k/2 ≤ r(1−k)/2 + rn−k/2.
The expression on the right-hand side achieves its minimum,
up to a constant, α0 = 2 nk(1−k)/(2(k+1)) for r = nk/(k+1).
This corresponds to the following solution:

αm = max
{

2− m

nk/(k+1)
, 0
}
n

k(1−k)
2(k+1) (8)

With this choice of αm, ‖Γ̃‖ = Ω(α0n
k/2) = Ω(nk/(k+1)).

3.6 Constructing Γ from Γ̃
The matrix Γ̃ gives us the desired ratio of norms of Γ̃

and Γ̃ ◦ ∆i. Unfortunately, Γ̃ cannot directly be used as
an adversary matrix, because it contains illegal columns y
with f(y) = 1, that is, y that contain an element of the
orthogonal array on S ⊂ [n] : |S| = k, i.e., yS ∈ TS . We
show that after removing the illegal columns it is still good
enough.

Lemma 3. Let Γ be the sub-matrix of Γ̃ with the illegal

columns removed. Then ‖Γ ◦ ∆1‖ ≤ ‖Γ̃ ◦ ∆1‖, and ‖Γ‖ is

still Ω(α0n
k/2) when q ≥ nk.
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Proof. We estimate ‖Γ‖ from below by w∗Γw′ using unit
vectors w,w′ with all elements equal. Recall Equation (5):

G̃T = α0e
⊗(n−1)
0 (e⊗n

0 )∗ +
∑
u,v

α|v|(u
(`u) ⊗ v)(u⊗ v)∗ ,

where the summation is over all u and v such that at least
one of them contains an element different from e0. The
sum of each column in each of (u(`u) ⊗ v)(u ⊗ v)∗ still is

zero because at least one of u(`u) or v sums up to zero.
Therefore the contribution of the sum is zero regardless of
which columns have been removed.

By summing over all
(
n
k

)
choices of S, we get

‖Γ‖ ≥ w∗Γw′ =

√√√√(n
k

)
α0 (e⊗n

0 )∗Lw
′ ,

where eL denotes the sub-vector of e restricted to L, and L
is the set of legal columns. Since both e0 and w′ are unit
vectors with all elements equal, and w′ is supported on L,
(e⊗n

0 )∗Lw
′ =

√
|L|/qn.

Let us estimate the fraction of legal columns. The prob-
ability that a uniformly random input y ∈ [q]n contains an
orthogonal array at any given k-tuple S is 1

q
. By the union

bound, the probability that there exists such S is at most(
n
k

)
1
q
. Therefore the probability that a random column is

legal is |L|
qn
≥ 1−

(
n
k

)
1
q
, which is Ω(1) when q ≥ nk.

Thus, with the choice of αm from (8), we have Adv±(f) =

Ω(α0n
k/2) = Ω(nk/(k+1)). This finishes the proof of Theo-

rem 2.

4. OPEN PROBLEMS
Our technique relies crucially on the nk lower bound on

the alphabet size. Can one relax this bound in some special
cases? For example, element distinctness is nontrivial when
q ≥ n, but our lower bound only holds for q ≥ n2.

A tight Ω(n2/3) lower bound for element distinctness was
originally proved by the polynomial method [1] by reduc-
tion via the collision problem. The k-collision problem is to
decide whether a given function is 1 : 1 or k : 1, provided
that it is of one of the two types. One can use an algo-
rithm for element distinctness to solve the 2-collision prob-
lem, and thus the tight Ω(n1/3) lower bound for collision
implies in [1] implies a tight lower bound for element dis-
tinctness. Unfortunately, the reduction doesn’t go in both
directions and hence our result doesn’t imply any nontrivial
adversary bound for k-collision. The simpler nonnegative-
weight adversary bound is limited to O(1) due to the prop-
erty testing barrier. Roughly speaking, if every 0-input dif-
fers from every 1-input in at least an ε-fraction of the input,
the nonnegative-weight adversary bound is limited by O( 1

ε
).

How does an explicit negative-weight adversary matrix for
an ω(1) lower bound look like?

The recent learning graph-based algorithm for k-distinct-

ness [8] solves the problem in O(n1−2k−2/(2k−1)) quantum

queries, which is less than O(nk/(k+1)) but more than the

Ω(n2/3) lower bound by reduction from 2-distinctness. k-
distinctness is easier than the k-sum problem considered
in our paper because one can obtain nontrivial information
about the solution from partial solutions, i.e., from `-tuples
of equal numbers for ` < k. Can one use our technique to
prove an ω(n2/3) lower bound for k-distinctness?

The k-sum problem is very structured in the sense that all
k-tuples of the input variables, and all possible values seen
on a (k − 1)-tuple, are equal with respect to the function.
The symmetry of this problem helped us to design a sym-
metric adversary matrix. The nonnegative-weight adversary
bound gives nontrivial lower bounds for most problems, by
simply putting most of the weight on hard-to-distinguish
input pairs, regardless of whether the problem is symmet-
ric or not. Can one use our technique to improve the best
known lower bounds for some non-symmetric problems, for
example, to prove an ω(

√
n) lower bound for graph colli-

sion, ω(n) for triangle finding, or ω(n3/2) for verification of
matrix products?
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327



make adversaries stronger. In Proceedings of the 39th
ACM STOC, pages 526–535, 2007.

[13] K. Kalach. Personal communication, 2012.

[14] S. Kutin. Quantum lower bound for the collision
problem with small range. Theory of Computing,
1(1):29–36, 2005.

[15] T. Lee, R. Mittal, B. Reichardt, R. Špalek, and
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