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Vp’k21 W —> ((:J)f:’1 o
N — (n)y ,+ For every partition of (%) into k classes (colors) there exists X € (;;) such that (’;) belongs to at
most t parts.
(t = 1 means that (;f) is monochromatic.)
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Y(0,<0)c0k>1 ¢ (W, <) — (w, <)

Vp’k21 W —> ((:J)f:’1 o
Structural formulation:
Let O be the class of all finite linear orders.
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Y(0,<0)c0k>1 ¢ (W, <) — (w, <)
(%) is the set of all embeddings of B to A.

Vp’k21 W —> ((:J)f:’1 o
Structural formulation:
Let O be the class of all finite linear orders.

(0,<0)
kAo

C — (B)} ;: For every k-coloring of () there exists f € (§) such that ("®)) has at most ¢ colors.
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Vp’k21 W —> ((:J)f:’1 o
Structural formulation:
Let O be the class of all finite linear orders.
0,<
Y(0,<0)c0k>1 ¢ (W, <) — (w, S)S(J_O)'

Y0,<0)e0k>1:(Q <) — (Q, <)

(0,<0)
k1 .
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Vp’k21 W —> ((:J)f:’1 o
Structural formulation:
Let O be the class of all finite linear orders.
0,<
Y(0,<0)c0k>1 ¢ (W, <) — (w, S)LFO)-
Sierpiski: not true for |O] = 2.

Y0,<0)e0k>1:(Q <) — (Q, <)

(0,<0)
k1 .
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X1
Color of k-tuple = shape of meet closure in the tree
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Color of k-tuple = shape of meet closure in the tree
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Color of k-tuple = shape of meet closure in the tree
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theorem.

In 1970’s Laver developed method of finding copies of Q in Q with bounded number of colors using Milliken’s tree
vV 3 v S (Q, < Q,< (0,<0)
(0,<0)e0TT=T(10pewk>1 : (@, <) — (@, <) 7.
T(n) is the big Ramsey degree of n tuple in Q.
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theorem.

In 1970’s Laver developed method of finding copies of Q in Q with bounded number of colors using Milliken’s tree
vV 3 v S (Q, < Q,< (0,<0)
(0,<0)e0TT=T(10pewk>1 : (@, <) — (@, <) 7.
T(n) is the big Ramsey degree of n tuple in Q.

T(n) = tan®"=1(0).
tan(21=1)(0) is the (2n — 1)S! derivative of the tangent evaluated at 0
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theorem.

In 1970’s Laver developed method of finding copies of Q in Q with bounded number of colors using Milliken’s tree
0,<
Y(0,<0)e03T=T(|0)ewk>1 1 (@, <) —> (Q,S)ﬁ( o
T(n) is the big Ramsey degree of n tuple in Q.

,T

T(n) = tan®=1(0).
tan@=1(0) is the (2n — 1)S! derivative of the tangent evaluated at 0.

T(1)=1,T(2) =2,T(3) =16, T(4) = 272,
T(5) = 7936, T(6) = 353792, T(7) = 22368256
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Big Ramsey Degrees

In 1970’s Laver developed method of finding copies of Q in Q with bounded number of colors using Milliken’s tree
theorem.

Theorem (Devlin, 1979)

(0,<
Y(0,<0)e031=T(10))cwk>1 1 (@, <) — (Q7<) <o)

T(n) is the big Ramsey degree of n tuple in Q.
T(n) = tan®"=1(0).
tan(21=1)(0) is the (2n — 1)St derivative of the tangent evaluated at 0.

T(1) =1,T(2)=2,T(3) =16, T(4) =272,
= 7936, T(6) = 353792, T(7) = 22368256
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Characterisation of big Ramsey degrees of Rado graph.

@ Based on results of Sauer and Pouzet (1996), Sauer (2006) and Laflamme, Sauer, Vuksanovic (2006):
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local order.

Characterisation of big Ramsey degrees of Rado graph.

@ Based on results of Sauer and Pouzet (1996), Sauer (2006) and Laflamme, Sauer, Vuksanovic (2006):

® Nguyen Van Thé (2009): Characterisation of big Ramsey degrees of homogeneous ultrametric spaces

® Laflamme, Nguyen Van Thé, Sauer (2010): Characterisation of big Ramsey degrees of homogeneous dense
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Other results on big Ramsey degrees

@ Based on results of Sauer and Pouzet (1996), Sauer (2006) and Laflamme, Sauer, Vuksanovic (2006):
Characterisation of big Ramsey degrees of Rado graph.

® Nguyen Van Thé (2009): Characterisation of big Ramsey degrees of homogeneous ultrametric spaces

@ Laflamme, Nguyen Van Thé, Sauer (2010): Characterisation of big Ramsey degrees of homogeneous dense
local order.

@ Dobrinen (2020): Big Ramsey degrees of universal homogeneous triangle-free graphs are finite
@ Dobrinen (2019+): Big Ramsey degrees of universal homogeneous Kj-free graphs are finite for every k > 3.
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Other results on big Ramsey degrees

@ Based on results of Sauer and Pouzet (1996), Sauer (2006) and Laflamme, Sauer, Vuksanovic (2006):
Characterisation of big Ramsey degrees of Rado graph.

® Nguyen Van Thé (2009): Characterisation of big Ramsey degrees of homogeneous ultrametric spaces

@ Laflamme, Nguyen Van Thé, Sauer (2010): Characterisation of big Ramsey degrees of homogeneous dense
local order.

@ Dobrinen (2020): Big Ramsey degrees of universal homogeneous triangle-free graphs are finite
@ Dobrinen (2019+): Big Ramsey degrees of universal homogeneous Kj-free graphs are finite for every k > 3.

@ Zucker (2020+): Big Ramsey degrees of Fraissé limits of free amalgamation classes in binary language with
finitely many forbidden substructures are finite.
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Other results on big Ramsey degrees

@ Based on results of Sauer and Pouzet (1996), Sauer (2006) and Laflamme, Sauer, Vuksanovic (2006):
Characterisation of big Ramsey degrees of Rado graph.

® Nguyen Van Thé (2009): Characterisation of big Ramsey degrees of homogeneous ultrametric spaces

@ Laflamme, Nguyen Van Thé, Sauer (2010): Characterisation of big Ramsey degrees of homogeneous dense
local order.

@ Dobrinen (2020): Big Ramsey degrees of universal homogeneous triangle-free graphs are finite
@ Dobrinen (2019+): Big Ramsey degrees of universal homogeneous Kj-free graphs are finite for every k > 3.

@ Zucker (2020+): Big Ramsey degrees of Fraissé limits of free amalgamation classes in binary language with
finitely many forbidden substructures are finite.

@ Balko, Chodounsky, H., Kone¢ny, Vena (2020+): Big Ramsey degrees of 3-uniform hypergraphs are finite.

® Dobrinen (2020+) and indepdendently by Balko, Chodounsk™y, H, Kone¢ny, Vena, Zucker: Big Ramsey
degrees of the homogeneous triangle-free graph.

© Coulson, Dobrinen, Patel (2020+): Big Ramsey degrees of structures satisfying the Substructure Disjoint
Amalgamation Property.



order.

Let P be the class of all finite partial orders. By (P, <) we denote the (countable) universal homogeneous partial
The (countable) universal homogeneous partial order (P, <) has finite big Ramsey degrees:
o
Y(0,<)epIr=T(0)ecw izt (P, <) — (P, <)
Universality: every countable partial order has embedding to (P, <).

,<)

T
Homogeneity: every partial isomorphism of two finite substructures of (P, <) extends to an automorphism.
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Given a finite alphabet ¥ and k € w + 1, a k-parameter word is a (possibly infinite) string W in alphabet
X U {\;: 0 </ < k} containing each of \;, 0 < i < k, such that for every 1 < j < k, the first occurrence of );
appears after the first occurrence of \;_1.
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Definition (Parameter word)

Given a finite alphabet X and k € w + 1, a k-parameter word is a (possibly infinite) string W in alphabet

> U{);: 0 < i< k} containing each of A;, 0 < i < k, such that for every 1 < j < k, the first occurrence of A;
appears after the first occurrence of \;_.

¥ = {L, X, R}.
LRLAAoX A1 AR
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Definition (Parameter word)

Given a finite alphabet X and k € w + 1, a k-parameter word is a (possibly infinite) string W in alphabet

> U{);: 0 < i< k} containing each of A;, 0 < i < k, such that for every 1 < j < k, the first occurrence of A;
appears after the first occurrence of \;_.

¥ ={L X,R}.
LRL Ao X\ \oR

Definition (Substitution)

LRLA A XMAR(LR) = LRLLLXRLR
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Definition (Parameter word)

Given a finite alphabet X and k € w + 1, a k-parameter word is a (possibly infinite) string W in alphabet

> U{);: 0 < i< k} containing each of A;, 0 < i < k, such that for every 1 < j < k, the first occurrence of A;
appears after the first occurrence of \;_.

¥ = {L,X,R}.
LRLAg Ao XX\ A0 R
Definition (Substitution)
LRLMoAXA1AoR(LR) = LRLLLXRLR
LRLAGA XA NR(X) = LRLXXX
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Definition (Parameter word)

Given a finite alphabet X and k € w + 1, a k-parameter word is a (possibly infinite) string W in alphabet

> U{);: 0 < i< k} containing each of A;, 0 < i < k, such that for every 1 < j < k, the first occurrence of A;
appears after the first occurrence of \;_.

¥ = {L,X,R}.
LRLAg Ao XX\ A0 R
Definition (Substitution)
LRLMoAXA1AoR(LR) = LRLLLXRLR
LRLAGA XA NR(X) = LRLXXX

For set S of parameter words and a parameter word W:

W(S) = {W(U): Ue S}.




We will denote the set of all finite k-parameter words of length at most n by:
w/n
=1 (i)
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Notation
We will denote the set of all finite k-parameter words of length at most n by:

=1 i)

The following infinitary version of Graham—Rothschild Theorem is a direct consequence of the Carlson—Simpson
theorem. It was also independently proved by Voight in 1983 (apparently unpublished):
Theorem

Let ¥ be a finite alphabet and k > 0 a finite integer. If the set [£]* (7(’) is coloured by finitely many colours, then
there exists an infinite-parameter word W such that W ([£]* (%)) is monochromatic.
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Given a finite alphabet ¥, a finite integer k > 0 and a finite set S C [X]* (‘;(’) an envelope of S is an n-parameter
word W (for some n > k) satisfying S C W([Z]"(}))-
Envelope W is minimal if there is no envelope with fewer parameters.
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Definition

Given a finite alphabet T, a finite integer kK > 0 and a finite set S C [£]* (%), an envelope of S is an n-parameter
word W (for some n > k) satisfying S C W([Z]"(})).
Envelope W is minimal if there is no envelope with fewer parameters.

The set
$ = {0,000} < [=]* ()
has two envelopes: 0\gAg and 0\o0. Thus n = 1.
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Definition

Given a finite alphabet T, a finite integer kK > 0 and a finite set S C [£]* (%), an envelope of S is an n-parameter
word W (for some n > k) satisfying S C W([Z]"(})).
Envelope W is minimal if there is no envelope with fewer parameters.

The set

S = {0,000} C [T]* (‘6’)

has two envelopes: 0AgAg and 0X\o0. Thus n = 1.

Proposition

Let X be a finite alphabet, let k > 0 be a finite integer, let S C [X]* (‘;) be a finite non-empty set and let W be an
envelope of S. Then W has at most

(=] + k)T + 18] - |z
parameters.




envelope of S. Then W has at most

Let ¥ be a finite alphabet, let k > 0 be a finite integer, let S C [£]* (‘,‘(’) be a finite non-empty set and let W be an

(=] + k)1 + 18] - |=|
parameters.

v
Envelope:
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envelope of S. Then W has at most

Let ¥ be a finite alphabet, let k > 0 be a finite integer, let S C [£]* (‘,‘(’) be a finite non-empty set and let W be an

(=] + k)1 + 18] - |=|
parameters.

= 0
v = 0 0 1 1
Envelope: 0
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envelope of S. Then W has at most

Let ¥ be a finite alphabet, let k > 0 be a finite integer, let S C [£]* (‘,‘(’) be a finite non-empty set and let W be an

(=] + k)1 + 18] - |=|
parameters.

= 0 1 1 0 1
v = 0 0 1 1 0 1
Envelope: 0 X
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envelope of S. Then W has at most

Let ¥ be a finite alphabet, let k > 0 be a finite integer, let S C [£]* (‘,‘(’) be a finite non-empty set and let W be an

(=] + k)1 + 18] - |=|
parameters.

= 0 1 1 0 1
v = 0 0 1 1 0 1
Envelope: 0 X 1
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envelope of S. Then W has at most

Let ¥ be a finite alphabet, let k > 0 be a finite integer, let S C [£]* (‘,‘(’) be a finite non-empty set and let W be an

(=] + k)1 + 18] - |=|
parameters.

= 0 1 1 0 1
v = 0 0 1 1 0 1
Envelope: 0 X 1 A
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envelope of S. Then W has at most

Let ¥ be a finite alphabet, let k > 0 be a finite integer, let S C [£]* (‘,‘(’) be a finite non-empty set and let W be an

(=] + k)1 + 18] - |=|
parameters.

= 0 1 1 0 A1
v = 0 0 1 1 0o 1
Envelope: 0 X 1 XN X
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envelope of S. Then W has at most

Let ¥ be a finite alphabet, let k > 0 be a finite integer, let S C [£]* (‘,‘(’) be a finite non-empty set and let W be an

(=] + k)1 + 18] - |=|
parameters.

= 0 1 1 0 A1
v = 0 0 1 1 0o 1
Envelope: 0 X 1 XN X X
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envelope of S. Then W has at most

Let ¥ be a finite alphabet, let k > 0 be a finite integer, let S C [£]* (‘,‘(’) be a finite non-empty set and let W be an

(=] + k)1 + 18] - |=|
parameters.

v

= 0 1 1 0 1
Vv = 0 0 1 1 0 1
Envelope: 0 X\ 1T N X X

O
Given a finite alphabet ¥, a finite integer k > 0 and a finite set S C [X]* (‘;(’) with an envelope W, an embedding
type of S, denoted by 7(S), is the set of parameter words such that W(+(S)) = S.

T(U) =10, 7(V) =011

o
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> ={L,X,R}
L <lex X <lex R
For w,w’ € * we put w < w’ if and only if there exists 0 < i < min(|w|, |w’|) such that
0 (w;, w/) = (L, R) and
@ for every 0 < j < iit holds that w; <jex w].’.
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> ={L,X,R}
L <lex X <lex R
For w,w’ € * we put w < w’ if and only if there exists 0 < i < min(|w|, |w’|) such that
0 (w;, w/) = (L, R) and
@ for every 0 < j < iit holds that w; <jex w].’.
(X*, X) is a partial order.
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> ={L,X,R}
L <lex X <lex R
For w,w’ € * we put w < w’ if and only if there exists 0 < i < min(|w|, |w’|) such that
0 (w;, w/) = (L, R) and
@ for every 0 < j < iit holds that w; <jex Wj"
(X*, X) is a partial order.

«0O0>» «F)»r « >

<

it
v

DA



> ={L,X,R}
L <lex X <lex R
For w,w’ € * we put w < w’ if and only if there exists 0 < i < min(|w|, |w’|) such that
0 (w;, w/) = (L, R) and
@ for every 0 < j < iit holds that w; <jex Wj"
(X*, X) is a partial order.
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> ={L,X,R}
L <lex X <lex R
For w,w’ € * we put w < w’ if and only if there exists 0 < i < min(|w|, |w’|) such that
0 (w;, w/) = (L, R) and
@ for every 0 < j < iit holds that w; <jex Wj"
(X*, X) is a partial order.
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> ={L,X,R}
L <lex X <lex R
For w,w’ € * we put w < w’ if and only if there exists 0 < i < min(|w|, |w’|) such that
0 (w;, w/) = (L, R) and
@ for every 0 < j < iit holds that w; <jex Wj"
(X*, X) is a partial order.
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Y ={LX,R}
L <lex X <lex R

For w, w’ € ¥* we put w < w’ if and only if there exists 0 < i < min(|w|, |w’|) such that
0 (w;,w/) = (L, R)and
@ for every 0 < j < /it holds that w; <jex w/.’.

(X*, %) is a universal partial order

3
uw = L R
% = 0
ug =
1
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Y ={LX,R}
L <lex X <lex R

For w, w’ € ¥* we put w < w’ if and only if there exists 0 < i < min(|w|, |w’|) such that
0 (w;,w/) = (L, R)and
@ for every 0 < j < /it holds that w; <jex w/.’.

(X*, %) is a universal partial order

3
uw = L R
Z;iLLLH 0
uz =
1
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Y ={LX,R}
L <lex X <lex R

For w, w’ € ¥* we put w < w’ if and only if there exists 0 < i < min(|w|, |w’|) such that
0 (w;,w/) = (L, R)and
@ for every 0 < j < /it holds that w; <jex w/.’.

(X*, %) is a universal partial order

3
U():LH
uw = L L L R 0
w = X X R R L R
uz =
1
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Y ={LX,R}
L <lex X <lex R

For w, w’ € ¥* we put w < w’ if and only if there exists 0 < i < min(|w|, |w’|) such that
0 (w;,w/) = (L, R)and
@ for every 0 < j < /it holds that w; <jex w/.’.

(X*, %) is a universal partial order

3
U():LH
w = L L L R 0
w = X X R R L R
u3 = R R R R R R L R
1
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¥ = {L,X,R}

L <lex X <lex R
For w, w’ € ¥* we put w < w’ if and only if there exists 0 < i < min(|w|, |w’|) such that
0 (w;, w;) = (L, R) and

@ for every 0 < j < iit holds that w; <jex w/’

For every infinite-parameter word W it holds that u < v <= W(u) < W(v).

X
R

L
X

L
R X
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Y ={LX,R}
L <lex X <lex R

For w, w’ € ¥* we put w < w’ if and only if there exists 0 < i < min(|w|, |w’|) such that
0 (w;, w;) = (L, R) and

@ for every 0 < j < iit holds that w; <jex w/’

For every infinite-parameter word W it holds that u < v <= W(u) < W(v).

<

([ (]
X~

T 31X
o~

3T X<

>
o
x
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¥ = {L,X,R}

L <lex X <lex R

For w, w’ € ¥* we put w < w’ if and only if there exists 0 < i < min(|w|, |w’|) such that
0 (w;,w/) = (L, R)and
@ for every 0 < j < /it holds that w; <jex w/.’.

For every infinite-parameter word W it holds that u < v <= W(u) < W(v).

W(u)
w(v)

=
([ [ T T |

X=X

JTIJ/IT/IX

JI I X
x XX

o~

x X
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(X*, X) is a partial order.

(X*, <) is a universal partial order

For every infinite-parameter word W it holds that u < v < W(u) < W(v).

Let ¥ be a finite alphabet and k > 0 a finite integer. If the set [£]* (‘,;’) is coloured by finitely many colours, then
there exists an infinite-parameter word W such that W ([Z]" (})) is monochromatic.

o,
Y(0,<)eP3T=Ty(|0))cw k21 (P, <) — (P, S)ﬁ,TS)-
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(X*, X) is a partial order.

(X*, <) is a universal partial order

For every infinite-parameter word W it holds that u < v < W(u) < W(v).

Let ¥ be a finite alphabet and k > 0 a finite integer. If the set [£]* (‘,;’) is coloured by finitely many colours, then
there exists an infinite-parameter word W such that W ([Z]" (})) is monochromatic.

o,
Y(0,<)eP3T=Ty(|0))cw k21 (P, <) — (P, S)ﬁ,TS)-

Fix (O, <) and a finite coloring of (égg)
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(X*, X) is a partial order.

(X*, <) is a universal partial order

For every infinite-parameter word W it holds that u < v < W(u) < W(v).

Let ¥ be a finite alphabet and k > 0 a finite integer. If the set [£]* (‘,;’) is coloured by finitely many colours, then
there exists an infinite-parameter word W such that W ([Z]" (})) is monochromatic.

o,
Y(0,<)eP3T=Ty(|0))cw k21 (P, <) — (P, S)ﬁ,TS)-

ggg) This gives a coloring of (= :3)).

Fix (O, <) and a finite coloring of ( 0.5
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Observation
(X*, <) is a partial order.

Observation
(X*, <) is a universal partial order

Observation
For every infinite-parameter word W it holds that u < v <~ W(u) <X W(v).

Theorem

Let ¥ be a finite alphabet and k > 0 a finite integer. If the set [£]* ( ) is coloured by finitely many colours, then
there exists an infinite-parameter word W such that W ([]* (%)) is monochromatic.

Theorem (H. 2020+)

o,
Y(0,<)eP3T=Ty(|0))ew k1 1 (P, <) — (P, <)( =)

Proof.
Fix (O, <) and a finite coloring of (égg) This gives a coloring of (((zo* S))) Because envelopes of copies of

(O, <) are bounded in dimension, apply the theorem above for every embedding type and obtain a copy of
(X*, =) with bounded number of colors.
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Observation
(X*, <) is a partial order.

Observation
(X*, <) is a universal partial order

Observation
For every infinite-parameter word W it holds that u < v <~ W(u) <X W(v).

Theorem

Let ¥ be a finite alphabet and k > 0 a finite integer. If the set [£]* ( ) is coloured by finitely many colours, then
there exists an infinite-parameter word W such that W ([]* (%)) is monochromatic.

Theorem (H. 2020+)

o,
Y(0,<)eP3T=Ty(|0))ew k1 1 (P, <) — (P, <)( =)

Proof.
Fix (O, <) and a finite coloring of (égg) This gives a coloring of (((zo* S))) Because envelopes of copies of

(O, <) are bounded in dimension, apply the theorem above for every embedding type and obtain a copy of
(X*, =) with bounded number of colors. By universality the copy of (X*, <) contains a copy of (O, <). O



Let L be a finite language consisting of binary relations only and KC be an amalgamation class of L-structures
satisfying:
@ forevery A € K, every v € K and every R € L it holds that (v, v) & R,,
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Theorem (M. Balko, D. Chodounsky, J.H., M. Kone¢ny, J. Neetil, L. Vena, 2020+)

Let L be a finite language consisting of binary relations only and KC be an amalgamation class of L-structures
satisfying:

@ forevery A € K, everyv € K and every R € L it holds that (v,v) ¢ R,,

@ structure B K-completion if and only if every induced cycle in B has K-completion,
Then the Fraissé limit of K has finite big Ramsey degrees.
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Theorem (M. Balko, D. Chodounsky, J.H., M. Kone¢ny, J. Neetil, L. Vena, 2020+)

Let L be a finite language consisting of binary relations only and KC be an amalgamation class of L-structures
satisfying:

@ forevery A € K, everyv € K and every R € L it holds that (v,v) ¢ R,,

@ structure B K-completion if and only if every induced cycle in B has K-completion,
Then the Fraissé limit of K has finite big Ramsey degrees.

Structure A is irreducible if for every u, v € A, u # v exists R € L such that (u, v) or (v, u) isin R,.
A is an (strong) completion of B if for every irreducible substructure C of B the identity is an embedding B — A.
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Theorem (M. Balko, D. Chodounsky, J.H., M. Kone¢ny, J. Neetil, L. Vena, 2020+)

Let L be a finite language consisting of binary relations only and KC be an amalgamation class of L-structures
satisfying:

@ forevery A € K, everyv € K and every R € L it holds that (v,v) ¢ R,,
@ structure B K-completion if and only if every induced cycle in B has K-completion,
Then the Fraissé limit of K has finite big Ramsey degrees.

Structure A is irreducible if for every u, v € A, u # v exists R € L such that (u, v) or (v,u)isin R,.
A is an (strong) completion of B if for every irreducible substructure C of B the identity is an embedding B — A.

© Linear orders, partial orders
® Triangle-free graphs
® Ultrametric spaces with finitely many distances
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Theorem (M. Balko, D. Chodounsky, J.H., M. Kone¢ny, J. Neetil, L. Vena, 2020+)

Let L be a finite language consisting of binary relations only and KC be an amalgamation class of L-structures
satisfying:

@ forevery A € K, everyv € K and every R € L it holds that (v,v) ¢ R,,
@ structure B K-completion if and only if every induced cycle in B has K-completion,
Then the Fraissé limit of K has finite big Ramsey degrees.

Structure A is irreducible if for every u, v € A, u # v exists R € L such that (u, v) or (v,u)isin R,.
A is an (strong) completion of B if for every irreducible substructure C of B the identity is an embedding B — A.

© Linear orders, partial orders

® Triangle-free graphs

® Ultrametric spaces with finitely many distances
O A-ultrametric spaces with finitely many distances
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Theorem (M. Balko, D. Chodounsky, J.H., M. Kone¢ny, J. Neetil, L. Vena, 2020+)

Let L be a finite language consisting of binary relations only and KC be an amalgamation class of L-structures
satisfying:

@ forevery A € K, everyv € K and every R € L it holds that (v,v) ¢ R,,
@ structure B K-completion if and only if every induced cycle in B has K-completion,
Then the Fraissé limit of K has finite big Ramsey degrees.

Structure A is irreducible if for every u, v € A, u # v exists R € L such that (u, v) or (v,u)isin R,.
A is an (strong) completion of B if for every irreducible substructure C of B the identity is an embedding B — A.

© Linear orders, partial orders

® Triangle-free graphs

® Ultrametric spaces with finitely many distances
O A-ultrametric spaces with finitely many distances
© Metric spaces with distances {0, 1,...,d}
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Theorem (M. Balko, D. Chodounsky, J.H., M. Kone¢ny, J. Neetil, L. Vena, 2020+)

Let L be a finite language consisting of binary relations only and KC be an amalgamation class of L-structures
satisfying:

@ forevery A € K, everyv € K and every R € L it holds that (v,v) ¢ R,,
@ structure B K-completion if and only if every induced cycle in B has K-completion,
Then the Fraissé limit of K has finite big Ramsey degrees.

Structure A is irreducible if for every u, v € A, u # v exists R € L such that (u, v) or (v,u)isin R,.
A is an (strong) completion of B if for every irreducible substructure C of B the identity is an embedding B — A.

© Linear orders, partial orders

® Triangle-free graphs

® Ultrametric spaces with finitely many distances

O A-ultrametric spaces with finitely many distances

© Metric spaces with distances {0, 1,...,d}

® S-metric spaces, S finite satisfying the 4-values condition.
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Theorem (M. Balko, D. Chodounsky, J.H., M. Kone¢ny, J. Neetil, L. Vena, 2020+)

Let L be a finite language consisting of binary relations only and KC be an amalgamation class of L-structures
satisfying:

@ forevery A € K, everyv € K and every R € L it holds that (v,v) ¢ R,,
@ structure B K-completion if and only if every induced cycle in B has K-completion,
Then the Fraissé limit of K has finite big Ramsey degrees.

Structure A is irreducible if for every u, v € A, u # v exists R € L such that (u, v) or (v,u)isin R,.
A is an (strong) completion of B if for every irreducible substructure C of B the identity is an embedding B — A.

© Linear orders, partial orders

® Triangle-free graphs

® Ultrametric spaces with finitely many distances

O A-ultrametric spaces with finitely many distances

© Metric spaces with distances {0, 1,...,d}

® S-metric spaces, S finite satisfying the 4-values condition.

@ Metric spaces associated to 3-constrained metrically homogeneous graphs from Cherlin’s list
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Theorem (M. Balko, D. Chodounsky, J.H., M. Kone¢ny, J. Neetil, L. Vena, 2020+)

Let L be a finite language consisting of binary relations only and KC be an amalgamation class of L-structures
satisfying:

@ forevery A € K, everyv € K and every R € L it holds that (v,v) ¢ R,,
@ structure B K-completion if and only if every induced cycle in B has K-completion,
Then the Fraissé limit of K has finite big Ramsey degrees.

Structure A is irreducible if for every u, v € A, u # v exists R € L such that (u, v) or (v,u)isin R,.
A is an (strong) completion of B if for every irreducible substructure C of B the identity is an embedding B — A.

© Linear orders, partial orders

® Triangle-free graphs

® Ultrametric spaces with finitely many distances

O A-ultrametric spaces with finitely many distances

© Metric spaces with distances {0, 1,...,d}

® S-metric spaces, S finite satisfying the 4-values condition.

@ Metric spaces associated to 3-constrained metrically homogeneous graphs from Cherlin’s list
® Free superpositions of the above.



@ Fix your favorite infinite structure A.

® Fix enumeration: assume that its vertex set is w

induced by Aon {1,2,...t} the same way.

Types of level t are equivalence classes of ~;

Lower bounds can be proved by generalizing techniques of Laflamme, Sauer and Vuksanovic (2006).

® Determine types: Given time t € w and vertices u, v € A, u,v > t put u ~; v if u and v extends the structure
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® Fix enumeration: assume that its vertex set is w

induced by Aon {1,2,...t} the same way.

Types of level t are equivalence classes of ~;

Lower bounds can be proved by generalizing techniques of Laflamme, Sauer and Vuksanovic (2006).

® Determine types: Given time t € w and vertices u, v € A, u,v > t put u ~; v if u and v extends the structure
@ Define tree on types: Type T is successor of type Qiff T C Q.
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@ Fix your favorite infinite structure A.

® Fix enumeration: assume that its vertex set is w

induced by Aon {1,2,...t} the same way.

Types of level t are equivalence classes of ~;

Lower bounds can be proved by generalizing techniques of Laflamme, Sauer and Vuksanovic (2006).

® Determine types: Given time t € w and vertices u, v € A, u,v > t put u ~; v if u and v extends the structure
@ Define tree on types: Type T is successor of type Qiff T C Q.

® Determine rich coloring: Color subtrees of T according to their “shapes”.
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Tree of types

Lower bounds can be proved by generalizing techniques of Laflamme, Sauer and Vuksanovic (2006).
@ Fix your favorite infinite structure A.
@ Fix enumeration: assume that its vertex set is w

® Determine types: Given time t € w and vertices u,v € A, u,v > t put u ~; v if u and v extends the structure
induced by Aon {1,2,...t} the same way.
Types of level t are equivalence classes of ~;

@ Define tree on types: Type T is successor of type Qiff T C Q.
@ Determine rich coloring: Color subtrees of T according to their “shapes”.

0 Determine unavoidable shapes: A shape is unavoidable if subtree induced by every copy of A in A contains
the shape.



Structural Ramsey Theory Big Ramsey Degrees of Q Related results Big Ramsey degrees of (P, <) Generalization Determining exact big Ramsey degrees
000 o 00000000000 o 000000

What are the shapes
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What are the shapes

st
,

%;/m (fo — X()), L@mwo/(fo — b, tg)



Structural Ramsey Theory Big Ramsey Degrees of Q Related results Big Ramsey degrees of (P, <) Generalization Determining exact big Ramsey degrees
000 o 00000000000 o 000000

What are the shapes

%;/m (fo — X()), L@gmwm/(fo — b, fg),
%z;%w (fg — X1)7 g%d)l{‘l/(tz — I3, t4),
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What are the shapes

%;/m (fo — X()), L@gmwm/(fo — b, fg),
%z;%w (fg — X1)7 g%d)l{‘l/(tz — I3, t4),
7@/}1 (t1 — Xg)7 <%47w/(t1 — Is, te),
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What are the shapes

[’0 — Xo) %mzzo/(to — t17t2);
), & Z. mm/(fg — B3, 1),
Y, DBranet (t; — 15, 1),
), (%ﬂrz///(t(i — 17, t8)’
Y, Drne (1 — 1o, tro),
), Drane (ts — by, ti2),
)s G (t7 — 3, tia),
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What are the shapes

[’0 — Xo) %mzzo/(to — t17t2);
), & Z. mm/(fg — B3, 1),
Y, DBranet (t; — 15, 1),
), (%ﬂrz///(t(i — 17, t8)’
Y, Drne (1 — 1o, tro),
), Drane (ts — by, ti2),
)s G (t7 — 3, tia),
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Color of a subgraph = shape of meet closure in the tree
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Color of a subgraph = shape of meet closure in the tree

Year later we observed that neighborhood of a vertex is the Random graph!
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Tree of types of the countable random 3-uniform hyper-graph

Hs R

Yo

Color of a subgraph = shape of meet closure in both tree
Year later we observed that neighborhood of a vertex is the Random graph!
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Thank you for the attention
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