Optimizing C++ std::vector use in GCC 14

Jan Hubi¢ka, Martin Jambor

c®E SUSE

SUSE Labs

April 23, 2024

1/20

Jpeg-XL benchmark

LLVM Clang 16 vs. GCC 13 Compiler Performance
On Intel Raptor Lake

Written by Michael Larabel in Software on 11 May 2023 at 11:00 AM EDT.
Page 3 of 5. 35 Comments.

JPEG XL libjxl 0.7 pESII
]

Input: PNG - Quality: 90

Phoronix.com

P MP/s, More Is Better

“Xelang -mrelax-all

Clang 16
SE+/-0.02,N=3
GCC 13.1
SE+/-0.01,N=3
5 10 15 20 25
1. (CXX) g++ options: -03 ive -fito -fno-rtti -funwind-tables -02 -fPIE -pie -latomic

2/20

Simple testcase

typedef std::pair<uint32_t, uint32_t> pair_t;
pair_t pair;

void test ()

{
std :: vector <pair_t> stack;
stack.push_back (pair);
while (!stack.empty())

{
pair_t cur = stack.back();
stack.pop_back ();
if (lcur.first)
{
cur.second++;
stack.push_back (cur);
}
if (cur.second > 10000)
break;

} 3/20

Benchmark runtime and size (GCC vs Clang; libstdc++ vs libc++)

gee 13-02

gee 13-03

gee 13-02-
nostdinc++
-
gee13-02-
nostdinc++
-

0.044

clang 18 -02 -
stdlib=libstdc++

runtime (sec)

clang 18 -03 --
stdlib=libstdc++

clang 18 -02 --
stdlib=libc++

clang 18 -03 --
stdlib=libc++

4/20

Benchmark runtime and size (GCC vs Clang;

gee 13-02

gee 13-03

gcc 13-02 -
nostdinc++
-l

gcc 13-02 -
nostdinc++
-l

clang 18 -02 --
stdlib=libstdc++

runtime (sec)

clang 18 -O3 --
stdlib=libstdc++

clang 18 -02 --
stdlib=libc++

clang 18 -O3 --
stdlib=libc++

0.0

0.045

0.044

02

04

gec 13-02

gec 13-03

gec13-02 -
nostdinc++
-l
gec13-02 -
nostdinc++
-l

clang 18 -02 --
stdlib=libstdc++

clang 18 -03 --
stdlib=libstdc++

clang 18 -02 --
stdlib=libc++

clang 18 -03 --
stdlib=libc++

250

500

750

1000

libstdc++ vs libc++)

1250

4/20

Call graph

5/20

Call graph after early inlining and optimization

main
test
std::_Vector_base<std::pair<unsigned int, unsigned int>, std::allocator<std::pair<unsigned int, unsigned int> > >::~_Vector_base push_back

'

_M_realloc_insert

.

std::_Vector_base<std::pair<unsigned int, unsigned int>, std::allocator<std::pair<unsigned int, unsigned int> > >::_M_deallocate allocate _M._check_len
operator delete operator new __throw_bad_alloc __throw_bad_array_new_length __throw_length_error

6/20

Call graph after interprocedural optimization

main

l

test

N\

operator delete __throw_length_error operator new

7/20

Why M realloc_insert is not inlined?

1. 376 bytes of x86-64 assembly
2. 111 instructions

8/20

Why M realloc_insert is not inlined?

1. 376 bytes of x86-64 assembly
2. 111 instructions

3. After early optimization GCC
thinks it will be 48 “instructions”

4. Inline limit: 15 for -O2, 30 for -O3

8/20

Why M realloc_insert is not inlined?

1. 376 bytes of x86-64 assembly
2. 111 instructions

3. After early optimization GCC
thinks it will be 48 “instructions”

4. Inline limit: 15 for -O2, 30 for -O3

5. Declaring it inline bumps limit to
70 for -O2, 200 for -O3

8/20

Why M. realloc_insert is not inlined?

1. 376 bytes of x86-64 assembly
2. 111 instructions

3. After early optimization GCC
thinks it will be 48 “instructions”

4. Inline limit: 15 for -O2, 30 for -O3

5. Declaring it inline bumps limit to
70 for -O2, 200 for -O3

Declaring M_realloc_insert inline
works, but bloats code.

(This is what Clang's libc++ does)

8/20

Why M realloc_insert is not inlined?

1. 376 bytes of x86-64 assembly
2. 111 instructions

3. After early optimization GCC
thinks it will be 48 “instructions”

4. Inline limit: 15 for -O2, 30 for -O3

5. Declaring it inline bumps limit to
70 for -O2, 200 for -O3

Declaring M_realloc_insert inline
works, but bloats code.

(This is what Clang's libc++ does)

8/20

Optimizing M realloc_insert

M_realloc_insert (GCC 13)

M_realloc_append (GCC 14)

376 — 257 bytes (46% less)
111 — 76 instructions (46% less)
(Clang-18 472; 99 instructions)

9/20

PR109849 suboptimal code for vector walking loop

Some commits solving this problem:

» optimize std: :vector: :push_back

» Use memcpy instead of memmove in
__relocate_a_l

10/20

PR109849 suboptimal code for vector walking loop

Some commits solving this problem:

I R i
» optimize std: :vector: :push_back ecognize pattern

size_t __len = M_check.len(...);

> H .
Uieezlnszl:fz ;nsitead of memmove in f C dom <= O)
_ o __builtin_unreachable ();

» -

PRIL037Y Early VRP and IPA-PROP and make GCC realize that length is

should work out value ranges from

builtin unreachable always positive. Propagate this

information across returned values.

10/20

PR109849 suboptimal code for vector walking loop

Some commits solving this problem:

It turns out LLVM inlines

_M_realloc_append due to

» Use memcpy instead of memmove in multiple-accounting bug predicting SRA
_relocate_a_l optimization. | fixed GCC to account it

correctly, but that is not enough to get

function inlined.

» optimize std: :vector: :push_back

» PR110377 Early VRP and IPA-PROP
should work out value ranges from
__builtin_unreachable

» Analyze SRA candidates in
ipa-fnsummary

10/20

PR109849 suboptimal code for vector walking loop

Some commits solving this problem:
- R i itional I

» optimize std: :vector: :push_back ecognize conditional memory load

produced by:

» Use memcpy instead of memmove in

_relocate_a_l

» PR110377 Early VRP and IPA-PROP
should work out value ranges from
__builtin_unreachable

template< class T >
T& max(T& a, T& b);

And turn it into actual max operation.

» Analyze SRA candidates in
ipa-fnsummary

» optimize std: :max early

10/20

PR109849 suboptimal code for vector walking loop

Some commits solving this problem: . .
! ving this p » Compute ipa-predicates for

» optimize std: :vector: :push_back conditionals involving

. . __builtin_expect_p
» Use memcpy instead of memmove in

__relocate_a_1 » Fix handling of
__builtin_expect_with_probability

> PR110377 Early VRP and IPA-PROP and improve first-match heuristics

should work out value ranges from
__builtin_unreachable

» Analyze SRA candidates in
ipa-fnsummary

» optimize std: :max early

Fix profile of forwarders produced by
cd-dce

» Add cold attribute to throw wrappers

and terminate
10/20

PR109849 suboptimal code for vector walking loop

Some commits solving this problem: . .
! ving this p » Compute ipa-predicates for

» optimize std: :vector: :push_back conditionals involving

. . __builtin_expect_p
» Use memcpy instead of memmove in

__relocate_a_1 » Fix handling of
__builtin_expect_with_probability

> PR110377 Early VRP and IPA-PROP and improve first-match heuristics

should work out value ranges from
__builtin_ unreachable » R. Biener: optimize code hoisting

» Analyze SRA candidates in
ipa-fnsummary

» optimize std: :max early

Fix profile of forwarders produced by
cd-dce

» Add cold attribute to throw wrappers

and terminate
10/20

Some commits solving this problem:

» optimize std: :vector: :push_back

» Use memcpy instead of memmove in
__relocate_a_l

» PR110377 Early VRP and IPA-PROP
should work out value ranges from
__builtin_unreachable

» Analyze SRA candidates in
ipa-fnsummary

» optimize std: :max early

Fix profile of forwarders produced by
cd-dce

» Add cold attribute to throw wrappers
and terminate

>

PR109849 suboptimal code for vector walking loop

Compute ipa-predicates for
conditionals involving
__builtin_expect_p

Fix handling of
__builtin_expect_with_probability
and improve first-match heuristics

» R. Biener: optimize code hoisting

» M. Jambor: SRA of non-escaped

aggregates passed by reference to
calls

PR110378 IPA-SRA for destructors

1. M. Jambor: Don't consider CLOBBERS as writes
preventing splitting

2. M. Jambor: Allow IPA-SRA in presence of returns
which will be removed

M. Jambor: Avoid returns of
references to SRA candidates 10/20

Loop of the simple testcase compiled by GCC13

11/20

Loads and stores in the loop of the simple testcase (GCC 13)

test ()

<bb 13>:
LOAD of _M_finish
LOAD of _M_start

[94%]
loop I
STORE to_M_finish
LOAD: of _M_end_of_storage;
§2%] [17%] 67%]
[[<bv 6> | [<wo7>:

| STORE o M_finish | [CALL _M_realloc_insert(&stack, D.28417, &cur);

LOAD of _M_start

LOAD of _M_finish

12/20

Loads and stores in the loop of the simple testcase (GCC 14)

LOAD of all components of stack

ﬁuw 1

! [l
!]
']
' [
' 1
' '
! [
!]
']
' 1
' 1
' [
! [
!]
']
' 1
' 1
' 1
' [
! [
']
' 1
' 1
' [
! [
! :
, <bb 6> !
! STORE t0 all components of stack 167%] !
! CALL _M_realloc_append(&stack, &cur); |
' 1
' 1
' 1
! 1
4 [
']
' 1
' 1
' [
!]
!]
' [
' 1
' 1
' 1
! [
1]
']
' 1
' 1
' 1
! [
1]
']
' 1
' 1
' [
! [
1 [
']

100%] [5%]

15%]

13/20

Scalar replacement of Aggregates (SRA)

struct Z
{
int i;
short j , k;
1
int foo (void)
{
struct Z z;
for (z.i = 0; z.i < bound; z.i+4)
{
z.j = foo();
Jx o x/
}
}

int foo (void)

{
int z%i; short z$j;
for (z$i = 0; z$i < bound; z$i++)
{
z$j = foo ();
Jx .. %/
}
}

14/20

Scalar replacement of Aggregates (2)

struct Z
{
int i;
short j k;
+i
int foo (void)
{
struct Z z;
for (z.i = 0; z.i < bound; z.i++4)
{
z.j = foo();
S5 x)
bar(z);
Jro)
}
}

int foo (void)

{
struct Z z; int z$%i; short z$j;
for (z%i = 0; z$%i < bound; z$i++)
{
z$j = foo ();
Jx .. x/
z.i = z%i;
z.] = z%j;
bar(z);
Jrowy
}
1 15/20

Scalar replacement of Aggregates (3)

int foo (void)

{
struct Z z;
for (z.i = 0; z.i < bound; z.i++)
{
z.j = foo();
bar(&z);
Jrox)
}
/x oo/
}

16 /20

Scalar replacement of Aggregates (3)

int foo (void)

{ {
struct Z z; stru
for (z.i = 0; z.i < bound; z.i++) for

{ {
z.j = foo();
/* */
bar(&z);
/* */
}
/* */

}

}
/%
}

int foo (void)

ct Z z; int z$%i; short z§j;
(z$i = 0; z$i < bound; z$i++)
z$j = foo ();
Jrox/
z.i = z%i;
z.j = z9%j;
bar(&z);
z%i = z.i;
28 = z.j;
/* */
*/

16 /20

Disqualification of candidates for SRA

e A

/* Allow constant—pool entries that

"

need to live in memory”. x/

if (needs_to_live_in_.memory (var) && !constant_decl_p (var))

if

((is-global_var (var)
|| (TREE.ADDRESSABLE (var)
&& pt_solution_includes (&cfun—>gimple_df—>escaped_return, var))
|| (TREE.CODE (var) = RESULT_DECL
&& 'DECL_BY_REFERENCE (var)
&& aggregate_value_p (var, current_function_decl)))
/* Allow constant—pool entries that "need to live in memory”. x/
&& !constant_decl_p (var))

17/20

Call graph after interprocedural optimization

main

l

test

N\

operator delete __throw_length_error operator new

18/20

Benchmark runtime and size (GCC vs Clang; libstdc++ vs libc++)

runtime (sec)

gee 13-02

gee 13-03

gec13-02 - 045
nostdinc++

gec 13-02- »
nostdinc++ 0.0a4
GCC 14-02

GCC 14 -03 0.044

clang 18 -02 --
stdlib=libstdc++

clang 18 -03 -
stdlib=libstdc++

clang 18 -02 -
stdlib=libc++

clang 18 -03 -
stdlib=libc++

19/20

Benchmark runtime and size (GCC vs Clang; libstdc++ vs libc++)

gee 13-02 gce 13-02

gee 13-03 gee 13-03

goc 13-02 - 00ue gcc13-02 -
nostdinc++ 2 nostdinc++
gec 13-02 - 004 gcc 13-02 -
nostdinc++ nostdinc++
g GCC 14 -02 GCC 14-02
)
o
E GCC 14 -03 0.044 GCC 14-03
€
2
clang 18 -02 -- clang 18 -02 --
stdlib=libstdc++ stdlib=libstdc++
clang 18 -03 -- clang 18 -03 -
stdlib=libstdc++ stdlib=libstdc++
clang 18 -02 - clang 18 -02 -
stdlib=libc++ stdlib=libc++
clang 18 -03 - clang 18 -03 --
stdlib=libc++ stdlib=libc++
0.0 02 04 0.6 0 250 500 750 1000 1250

19/20

Work in progress

> PR114821 M realloc_append should use memcpy instead of loop to copy data
when possible

» PR114822 Idist should produce memcpy/memset/memmove histograms based on
loop information converted

TODO
» PR110379 Unnecessary copies after early opts (unsolved)

» PR110414 Dead Code Elimination Regression since r14-1127-g9e2017aebac
(unsolved)

> Adding -fsane-operator-new command line option?

» Can we do enought of inter-procedural optimization to figure out that the testcase
reallocates the vector just once?

» What about other libstdc++ datastructures?

20/20

