
Optimizing C++ std::vector use in GCC 14

Jan Hubička, Martin Jambor

SUSE Labs

April 23, 2024

1 / 20

Jpeg-XL benchmark

2 / 20

Simple testcase

typedef s t d : : p a i r<u i n t 3 2 t , u i n t 3 2 t> p a i r t ;
p a i r t p a i r ;

vo id t e s t ()
{

s t d : : v e c t o r <p a i r t > s t a c k ;
s t a c k . push back (p a i r) ;
whi le (! s t a c k . empty ())

{
p a i r t cu r = s t a c k . back () ;
s t a c k . pop back () ;
i f (! cu r . f i r s t)

{
cu r . second++;
s t a c k . push back (cu r) ;

}
i f (cu r . second > 10000)

break ;
}

}
3 / 20

Benchmark runtime and size (GCC vs Clang; libstdc++ vs libc++)

4 / 20

Benchmark runtime and size (GCC vs Clang; libstdc++ vs libc++)

4 / 20

Call graph

std::__new_allocator<std::pair<unsigned int, unsigned int> >::construct<std::pair<unsigned int, unsigned int>, std::pair<unsigned int, unsigned int> >

operator new

_M_check_len std::vector<std::pair<unsigned int, unsigned int>, std::allocator<std::pair<unsigned int, unsigned int> > >::vector

std::allocator_traits<std::allocator<std::pair<unsigned int, unsigned int> > >::construct<std::pair<unsigned int, unsigned int>, std::pair<unsigned int, unsigned int> >

__relocate_object_a

std::allocator_traits<std::allocator<std::pair<unsigned int, unsigned int> > >::destroy<std::pair<unsigned int, unsigned int> >

std::__new_allocator<std::pair<unsigned int, unsigned int> >::destroy<std::pair<unsigned int, unsigned int> >

std::allocator_traits<std::allocator<std::pair<unsigned int, unsigned int> > >::max_size

std::__new_allocator<std::pair<unsigned int, unsigned int> >::max_size

__relocate_a_1 std::__new_allocator<std::pair<unsigned int, unsigned int> >::allocate

__throw_bad_alloc__throw_bad_array_new_length __builtin_expect

_S_max_size

min

__relocate_a

__niter_base

std::allocator_traits<std::allocator<std::pair<unsigned int, unsigned int> > >::allocate

std::vector<std::pair<unsigned int, unsigned int>, std::allocator<std::pair<unsigned int, unsigned int> > >::max_size

std::_Vector_base<std::pair<unsigned int, unsigned int>, std::allocator<std::pair<unsigned int, unsigned int> > >::_M_get_Tp_allocator

std::__new_allocator<std::pair<unsigned int, unsigned int> >::deallocate

operator delete

back empty

_S_relocate _M_allocate__gnu_cxx::operator-<std::pair<unsigned int, unsigned int>*, std::vector<std::pair<unsigned int, unsigned int>, std::allocator<std::pair<unsigned int, unsigned int> > > >

__gnu_cxx::__normal_iterator<std::pair<unsigned int, unsigned int>*, std::vector<std::pair<unsigned int, unsigned int>, std::allocator<std::pair<unsigned int, unsigned int> > > >::base

std::vector<std::pair<unsigned int, unsigned int>, std::allocator<std::pair<unsigned int, unsigned int> > >::begin

__gnu_cxx::__normal_iterator<std::pair<unsigned int, unsigned int>*, std::vector<std::pair<unsigned int, unsigned int>, std::allocator<std::pair<unsigned int, unsigned int> > > >::__normal_iterator __gnu_cxx::__normal_iterator<std::pair<unsigned int, unsigned int> const*, std::vector<std::pair<unsigned int, unsigned int>, std::allocator<std::pair<unsigned int, unsigned int> > > >::__normal_iterator

size max __throw_length_error

std::__new_allocator<std::pair<unsigned int, unsigned int> >::construct<std::pair<unsigned int, unsigned int>, std::pair<unsigned int, unsigned int> const&>

std::_Destroy<std::pair<unsigned int, unsigned int>*>

__destroystd::allocator_traits<std::allocator<std::pair<unsigned int, unsigned int> > >::deallocate

__gnu_cxx::__normal_iterator<std::pair<unsigned int, unsigned int>*, std::vector<std::pair<unsigned int, unsigned int>, std::allocator<std::pair<unsigned int, unsigned int> > > >::operator- operator==

__gnu_cxx::__normal_iterator<std::pair<unsigned int, unsigned int> const*, std::vector<std::pair<unsigned int, unsigned int>, std::allocator<std::pair<unsigned int, unsigned int> > > >::base

std::vector<std::pair<unsigned int, unsigned int>, std::allocator<std::pair<unsigned int, unsigned int> > >::end

_M_realloc_insert

_M_deallocate

std::allocator_traits<std::allocator<std::pair<unsigned int, unsigned int> > >::construct<std::pair<unsigned int, unsigned int>, std::pair<unsigned int, unsigned int> const&>

std::_Destroy<std::pair<unsigned int, unsigned int>*, std::pair<unsigned int, unsigned int> >

std::allocator<std::pair<unsigned int, unsigned int> >::allocator

std::__new_allocator<std::pair<unsigned int, unsigned int> >::__new_allocator

std::vector<std::pair<unsigned int, unsigned int>, std::allocator<std::pair<unsigned int, unsigned int> > >::~vector

pop_back

operator*

push_back

std::_Vector_base<std::pair<unsigned int, unsigned int>, std::allocator<std::pair<unsigned int, unsigned int> > >::~_Vector_base

std::_Vector_base<std::pair<unsigned int, unsigned int>, std::allocator<std::pair<unsigned int, unsigned int> > >::_Vector_impl::~_Vector_impl

std::allocator<std::pair<unsigned int, unsigned int> >::~allocator

std::__new_allocator<std::pair<unsigned int, unsigned int> >::~__new_allocator

std::_Vector_base<std::pair<unsigned int, unsigned int>, std::allocator<std::pair<unsigned int, unsigned int> > >::_Vector_impl::_Vector_impl

std::_Vector_base<std::pair<unsigned int, unsigned int>, std::allocator<std::pair<unsigned int, unsigned int> > >::_Vector_impl_data::_Vector_impl_data

main

test

std::_Vector_base<std::pair<unsigned int, unsigned int>, std::allocator<std::pair<unsigned int, unsigned int> > >::_Vector_base

5 / 20

Call graph after early inlining and optimization

std::_Vector_base<std::pair<unsigned int, unsigned int>, std::allocator<std::pair<unsigned int, unsigned int> > >::_M_deallocate

operator delete

allocate

operator new __throw_bad_alloc __throw_bad_array_new_length

_M_check_len

__throw_length_error

_M_realloc_insert

push_backstd::_Vector_base<std::pair<unsigned int, unsigned int>, std::allocator<std::pair<unsigned int, unsigned int> > >::~_Vector_base

main

test

6 / 20

Call graph after interprocedural optimization

test

operator delete

_M_realloc_insert

__throw_length_error operator new

main

7 / 20

Why M realloc insert is not inlined?

1. 376 bytes of x86-64 assembly

2. 111 instructions

3. After early optimization GCC
thinks it will be 48 “instructions”

4. Inline limit: 15 for -O2, 30 for -O3

5. Declaring it inline bumps limit to
70 for -O2, 200 for -O3

Declaring M realloc insert inline
works, but bloats code.

(This is what Clang’s libc++ does)

std::vector<std::pair<unsigned int, unsigned int> >::_M_realloc_insert<const std::pair<unsigned int, unsigned int>&> ()

loop (copy tail of the vector after new element; redundant for push_back)

loop (copy initial part of vector up to new element; should be memcpy)

COUNT:1<bb 14>:

__first_34 = PHI <__position_42(12), __first_36(13)>

__cur_35 = PHI <_67(12), __cur_37(13)>

if (__first_34 != _55)
 goto <bb 13>; [0.00%]
else
 goto <bb 15>; [100.00%]

COUNT:0<bb 13>:

MEM[(struct pair *)__cur_35] = MEM[(struct pair &)__first_34];

__first_36 = __first_34 + 8;

__cur_37 = __cur_35 + 8;

[0%]

COUNT:1<bb 15>:

_61 = (unsigned long) _55;

_62 = _61 - _79;

__cur_80 = _67 + _62; // New end of vector

if (_54 != 0B) // If vector was non-empty it needs destruction
 goto <bb 16>; [0.00%]
else
 goto <bb 17>; [100.00%]

[100%] [100%]

COUNT:1<bb 11>:

__first_38 = PHI <_54(9), __first_40(10)>

__cur_39 = PHI <iftmp.5_23(9), _78(10)>

if (__first_38 != __position_42)
 goto <bb 10>; [0.00%]
else
 goto <bb 12>; [100.00%]

COUNT:0<bb 10>:

_78 = __cur_39 + 8;

MEM[(struct pair *)_78 + -8B] = MEM[(struct pair &)__first_38];

__first_40 = __first_38 + 8;

[0%]

COUNT:1<bb 12>:

_79 = (unsigned long) __position_42;

_77 = (unsigned long) _54;

_76 = _79 + 8;

_41 = _76 - _77;

_67 = iftmp.5_23 + _41;
goto <bb 14>; [100.00%]

[100%] [100%]

ENTRY

EXIT

COUNT:1<bb 2>:

__position_42 = MEM[(struct __normal_iterator *)&__position]; // where value should be inserted

_54 = this->_M_impl._M_start; // start of vector

_55 = this->_M_impl._M_finish; // end of vector

_58 = _55 - _54;

_59 = _58 /[ex] 8;

_60 = (long unsigned int) _59; // size of vector in elements

if (_60 == 0xFFFFFFFFFFFFFFF) // will it overflow 64bit address space?
 goto <bb 3>; [0.00%]
else
 goto <bb 4>; [100.00%]

[100%]

COUNT:0<bb 3>:

std::__throw_length_error ("vector::_M_realloc_insert");

[0%]

COUNT:1<bb 4>:

_64 = min (_60, 1(5)) // if vector is empty be sure it grows to size 1

_52 = .ADD_OVERFLOW (_60, _64); // double the vector size

__len_65 = REALPART_EXPR <_52>; // doubled value

_50 = IMAGPART_EXPR <_52>; // nonzero on overflow

_63 = __position_42 - _54;

if (_50 != 0) // Did it overflow?
 goto <bb 8>; [0.00%]
else
 goto <bb 7>; [100.00%]

[100%]

COUNT:1<bb 7>:

_66 = MIN_EXPR <__len_65, 0xFFFFFFFFFFFFFFF> // Be sure to fit in 64bit address space;

if (__len_65 != 0) // Redundant check for resulting length being 0
 goto <bb 8>; [100.00%]
else
 goto <bb 9>; [0.00%]

[100%]

COUNT:1<bb 8>:

iftmp.4_20 = PHI <_66(7), 0xFFFFFFFFFFFFFFF(6)> // If overflow did not happen, use size computed, otherwise allocate 2^63 bytes

_71 = iftmp.4_20 * 8; // Recompute number of elements back to bytes

_72 = operator new (_71); // Allocate

[0%]

[100%]

COUNT:1<bb 9>:

iftmp.5_23 = PHI <0B(7), _72(8)> // Redundant: If we are allocating 0 byte vector, address will be 0; otherwise it is return value of new

iftmp.4_81 = PHI <__len_65(7), iftmp.4_20(8)> // Redundant: If we are allocating 0 byte vector, length will be 0

_1 = (long unsigned int) _63; // Construct new pair and write it to right position

_2 = iftmp.5_23 + _1;

*_2 = *__args#0_22;
goto <bb 11>; [100.00%]

[0%]

[100%]

[100%]

[100%]

COUNT:0<bb 16>:

_10 = this->D.26791._M_impl.D.26098._M_end_of_storage;

_11 = _10 - _54;

_73 = (long unsigned int) _11;

operator delete (_54, _73);

[0%]

COUNT:1<bb 17>:

this->D.26791._M_impl.D.26098._M_start = iftmp.5_23;

this->D.26791._M_impl.D.26098._M_finish = __cur_80;

_14 = iftmp.4_81 * 8;

_15 = iftmp.5_23 + _14;

this->D.26791._M_impl.D.26098._M_end_of_storage = _15;

return;

[100%]

[100%]

[100%]

8 / 20

Why M realloc insert is not inlined?

1. 376 bytes of x86-64 assembly

2. 111 instructions

3. After early optimization GCC
thinks it will be 48 “instructions”

4. Inline limit: 15 for -O2, 30 for -O3

5. Declaring it inline bumps limit to
70 for -O2, 200 for -O3

Declaring M realloc insert inline
works, but bloats code.

(This is what Clang’s libc++ does)

std::vector<std::pair<unsigned int, unsigned int> >::_M_realloc_insert<const std::pair<unsigned int, unsigned int>&> ()

loop (copy tail of the vector after new element; redundant for push_back)

loop (copy initial part of vector up to new element; should be memcpy)

COUNT:1<bb 14>:

__first_34 = PHI <__position_42(12), __first_36(13)>

__cur_35 = PHI <_67(12), __cur_37(13)>

if (__first_34 != _55)
 goto <bb 13>; [0.00%]
else
 goto <bb 15>; [100.00%]

COUNT:0<bb 13>:

MEM[(struct pair *)__cur_35] = MEM[(struct pair &)__first_34];

__first_36 = __first_34 + 8;

__cur_37 = __cur_35 + 8;

[0%]

COUNT:1<bb 15>:

_61 = (unsigned long) _55;

_62 = _61 - _79;

__cur_80 = _67 + _62; // New end of vector

if (_54 != 0B) // If vector was non-empty it needs destruction
 goto <bb 16>; [0.00%]
else
 goto <bb 17>; [100.00%]

[100%] [100%]

COUNT:1<bb 11>:

__first_38 = PHI <_54(9), __first_40(10)>

__cur_39 = PHI <iftmp.5_23(9), _78(10)>

if (__first_38 != __position_42)
 goto <bb 10>; [0.00%]
else
 goto <bb 12>; [100.00%]

COUNT:0<bb 10>:

_78 = __cur_39 + 8;

MEM[(struct pair *)_78 + -8B] = MEM[(struct pair &)__first_38];

__first_40 = __first_38 + 8;

[0%]

COUNT:1<bb 12>:

_79 = (unsigned long) __position_42;

_77 = (unsigned long) _54;

_76 = _79 + 8;

_41 = _76 - _77;

_67 = iftmp.5_23 + _41;
goto <bb 14>; [100.00%]

[100%] [100%]

ENTRY

EXIT

COUNT:1<bb 2>:

__position_42 = MEM[(struct __normal_iterator *)&__position]; // where value should be inserted

_54 = this->_M_impl._M_start; // start of vector

_55 = this->_M_impl._M_finish; // end of vector

_58 = _55 - _54;

_59 = _58 /[ex] 8;

_60 = (long unsigned int) _59; // size of vector in elements

if (_60 == 0xFFFFFFFFFFFFFFF) // will it overflow 64bit address space?
 goto <bb 3>; [0.00%]
else
 goto <bb 4>; [100.00%]

[100%]

COUNT:0<bb 3>:

std::__throw_length_error ("vector::_M_realloc_insert");

[0%]

COUNT:1<bb 4>:

_64 = min (_60, 1(5)) // if vector is empty be sure it grows to size 1

_52 = .ADD_OVERFLOW (_60, _64); // double the vector size

__len_65 = REALPART_EXPR <_52>; // doubled value

_50 = IMAGPART_EXPR <_52>; // nonzero on overflow

_63 = __position_42 - _54;

if (_50 != 0) // Did it overflow?
 goto <bb 8>; [0.00%]
else
 goto <bb 7>; [100.00%]

[100%]

COUNT:1<bb 7>:

_66 = MIN_EXPR <__len_65, 0xFFFFFFFFFFFFFFF> // Be sure to fit in 64bit address space;

if (__len_65 != 0) // Redundant check for resulting length being 0
 goto <bb 8>; [100.00%]
else
 goto <bb 9>; [0.00%]

[100%]

COUNT:1<bb 8>:

iftmp.4_20 = PHI <_66(7), 0xFFFFFFFFFFFFFFF(6)> // If overflow did not happen, use size computed, otherwise allocate 2^63 bytes

_71 = iftmp.4_20 * 8; // Recompute number of elements back to bytes

_72 = operator new (_71); // Allocate

[0%]

[100%]

COUNT:1<bb 9>:

iftmp.5_23 = PHI <0B(7), _72(8)> // Redundant: If we are allocating 0 byte vector, address will be 0; otherwise it is return value of new

iftmp.4_81 = PHI <__len_65(7), iftmp.4_20(8)> // Redundant: If we are allocating 0 byte vector, length will be 0

_1 = (long unsigned int) _63; // Construct new pair and write it to right position

_2 = iftmp.5_23 + _1;

*_2 = *__args#0_22;
goto <bb 11>; [100.00%]

[0%]

[100%]

[100%]

[100%]

COUNT:0<bb 16>:

_10 = this->D.26791._M_impl.D.26098._M_end_of_storage;

_11 = _10 - _54;

_73 = (long unsigned int) _11;

operator delete (_54, _73);

[0%]

COUNT:1<bb 17>:

this->D.26791._M_impl.D.26098._M_start = iftmp.5_23;

this->D.26791._M_impl.D.26098._M_finish = __cur_80;

_14 = iftmp.4_81 * 8;

_15 = iftmp.5_23 + _14;

this->D.26791._M_impl.D.26098._M_end_of_storage = _15;

return;

[100%]

[100%]

[100%]

8 / 20

Why M realloc insert is not inlined?

1. 376 bytes of x86-64 assembly

2. 111 instructions

3. After early optimization GCC
thinks it will be 48 “instructions”

4. Inline limit: 15 for -O2, 30 for -O3

5. Declaring it inline bumps limit to
70 for -O2, 200 for -O3

Declaring M realloc insert inline
works, but bloats code.

(This is what Clang’s libc++ does)

std::vector<std::pair<unsigned int, unsigned int> >::_M_realloc_insert<const std::pair<unsigned int, unsigned int>&> ()

loop (copy tail of the vector after new element; redundant for push_back)

loop (copy initial part of vector up to new element; should be memcpy)

COUNT:1<bb 14>:

__first_34 = PHI <__position_42(12), __first_36(13)>

__cur_35 = PHI <_67(12), __cur_37(13)>

if (__first_34 != _55)
 goto <bb 13>; [0.00%]
else
 goto <bb 15>; [100.00%]

COUNT:0<bb 13>:

MEM[(struct pair *)__cur_35] = MEM[(struct pair &)__first_34];

__first_36 = __first_34 + 8;

__cur_37 = __cur_35 + 8;

[0%]

COUNT:1<bb 15>:

_61 = (unsigned long) _55;

_62 = _61 - _79;

__cur_80 = _67 + _62; // New end of vector

if (_54 != 0B) // If vector was non-empty it needs destruction
 goto <bb 16>; [0.00%]
else
 goto <bb 17>; [100.00%]

[100%] [100%]

COUNT:1<bb 11>:

__first_38 = PHI <_54(9), __first_40(10)>

__cur_39 = PHI <iftmp.5_23(9), _78(10)>

if (__first_38 != __position_42)
 goto <bb 10>; [0.00%]
else
 goto <bb 12>; [100.00%]

COUNT:0<bb 10>:

_78 = __cur_39 + 8;

MEM[(struct pair *)_78 + -8B] = MEM[(struct pair &)__first_38];

__first_40 = __first_38 + 8;

[0%]

COUNT:1<bb 12>:

_79 = (unsigned long) __position_42;

_77 = (unsigned long) _54;

_76 = _79 + 8;

_41 = _76 - _77;

_67 = iftmp.5_23 + _41;
goto <bb 14>; [100.00%]

[100%] [100%]

ENTRY

EXIT

COUNT:1<bb 2>:

__position_42 = MEM[(struct __normal_iterator *)&__position]; // where value should be inserted

_54 = this->_M_impl._M_start; // start of vector

_55 = this->_M_impl._M_finish; // end of vector

_58 = _55 - _54;

_59 = _58 /[ex] 8;

_60 = (long unsigned int) _59; // size of vector in elements

if (_60 == 0xFFFFFFFFFFFFFFF) // will it overflow 64bit address space?
 goto <bb 3>; [0.00%]
else
 goto <bb 4>; [100.00%]

[100%]

COUNT:0<bb 3>:

std::__throw_length_error ("vector::_M_realloc_insert");

[0%]

COUNT:1<bb 4>:

_64 = min (_60, 1(5)) // if vector is empty be sure it grows to size 1

_52 = .ADD_OVERFLOW (_60, _64); // double the vector size

__len_65 = REALPART_EXPR <_52>; // doubled value

_50 = IMAGPART_EXPR <_52>; // nonzero on overflow

_63 = __position_42 - _54;

if (_50 != 0) // Did it overflow?
 goto <bb 8>; [0.00%]
else
 goto <bb 7>; [100.00%]

[100%]

COUNT:1<bb 7>:

_66 = MIN_EXPR <__len_65, 0xFFFFFFFFFFFFFFF> // Be sure to fit in 64bit address space;

if (__len_65 != 0) // Redundant check for resulting length being 0
 goto <bb 8>; [100.00%]
else
 goto <bb 9>; [0.00%]

[100%]

COUNT:1<bb 8>:

iftmp.4_20 = PHI <_66(7), 0xFFFFFFFFFFFFFFF(6)> // If overflow did not happen, use size computed, otherwise allocate 2^63 bytes

_71 = iftmp.4_20 * 8; // Recompute number of elements back to bytes

_72 = operator new (_71); // Allocate

[0%]

[100%]

COUNT:1<bb 9>:

iftmp.5_23 = PHI <0B(7), _72(8)> // Redundant: If we are allocating 0 byte vector, address will be 0; otherwise it is return value of new

iftmp.4_81 = PHI <__len_65(7), iftmp.4_20(8)> // Redundant: If we are allocating 0 byte vector, length will be 0

_1 = (long unsigned int) _63; // Construct new pair and write it to right position

_2 = iftmp.5_23 + _1;

*_2 = *__args#0_22;
goto <bb 11>; [100.00%]

[0%]

[100%]

[100%]

[100%]

COUNT:0<bb 16>:

_10 = this->D.26791._M_impl.D.26098._M_end_of_storage;

_11 = _10 - _54;

_73 = (long unsigned int) _11;

operator delete (_54, _73);

[0%]

COUNT:1<bb 17>:

this->D.26791._M_impl.D.26098._M_start = iftmp.5_23;

this->D.26791._M_impl.D.26098._M_finish = __cur_80;

_14 = iftmp.4_81 * 8;

_15 = iftmp.5_23 + _14;

this->D.26791._M_impl.D.26098._M_end_of_storage = _15;

return;

[100%]

[100%]

[100%]

8 / 20

Why M realloc insert is not inlined?

1. 376 bytes of x86-64 assembly

2. 111 instructions

3. After early optimization GCC
thinks it will be 48 “instructions”

4. Inline limit: 15 for -O2, 30 for -O3

5. Declaring it inline bumps limit to
70 for -O2, 200 for -O3

Declaring M realloc insert inline
works, but bloats code.

(This is what Clang’s libc++ does)

std::vector<std::pair<unsigned int, unsigned int> >::_M_realloc_insert<const std::pair<unsigned int, unsigned int>&> ()

loop (copy tail of the vector after new element; redundant for push_back)

loop (copy initial part of vector up to new element; should be memcpy)

COUNT:1<bb 14>:

__first_34 = PHI <__position_42(12), __first_36(13)>

__cur_35 = PHI <_67(12), __cur_37(13)>

if (__first_34 != _55)
 goto <bb 13>; [0.00%]
else
 goto <bb 15>; [100.00%]

COUNT:0<bb 13>:

MEM[(struct pair *)__cur_35] = MEM[(struct pair &)__first_34];

__first_36 = __first_34 + 8;

__cur_37 = __cur_35 + 8;

[0%]

COUNT:1<bb 15>:

_61 = (unsigned long) _55;

_62 = _61 - _79;

__cur_80 = _67 + _62; // New end of vector

if (_54 != 0B) // If vector was non-empty it needs destruction
 goto <bb 16>; [0.00%]
else
 goto <bb 17>; [100.00%]

[100%] [100%]

COUNT:1<bb 11>:

__first_38 = PHI <_54(9), __first_40(10)>

__cur_39 = PHI <iftmp.5_23(9), _78(10)>

if (__first_38 != __position_42)
 goto <bb 10>; [0.00%]
else
 goto <bb 12>; [100.00%]

COUNT:0<bb 10>:

_78 = __cur_39 + 8;

MEM[(struct pair *)_78 + -8B] = MEM[(struct pair &)__first_38];

__first_40 = __first_38 + 8;

[0%]

COUNT:1<bb 12>:

_79 = (unsigned long) __position_42;

_77 = (unsigned long) _54;

_76 = _79 + 8;

_41 = _76 - _77;

_67 = iftmp.5_23 + _41;
goto <bb 14>; [100.00%]

[100%] [100%]

ENTRY

EXIT

COUNT:1<bb 2>:

__position_42 = MEM[(struct __normal_iterator *)&__position]; // where value should be inserted

_54 = this->_M_impl._M_start; // start of vector

_55 = this->_M_impl._M_finish; // end of vector

_58 = _55 - _54;

_59 = _58 /[ex] 8;

_60 = (long unsigned int) _59; // size of vector in elements

if (_60 == 0xFFFFFFFFFFFFFFF) // will it overflow 64bit address space?
 goto <bb 3>; [0.00%]
else
 goto <bb 4>; [100.00%]

[100%]

COUNT:0<bb 3>:

std::__throw_length_error ("vector::_M_realloc_insert");

[0%]

COUNT:1<bb 4>:

_64 = min (_60, 1(5)) // if vector is empty be sure it grows to size 1

_52 = .ADD_OVERFLOW (_60, _64); // double the vector size

__len_65 = REALPART_EXPR <_52>; // doubled value

_50 = IMAGPART_EXPR <_52>; // nonzero on overflow

_63 = __position_42 - _54;

if (_50 != 0) // Did it overflow?
 goto <bb 8>; [0.00%]
else
 goto <bb 7>; [100.00%]

[100%]

COUNT:1<bb 7>:

_66 = MIN_EXPR <__len_65, 0xFFFFFFFFFFFFFFF> // Be sure to fit in 64bit address space;

if (__len_65 != 0) // Redundant check for resulting length being 0
 goto <bb 8>; [100.00%]
else
 goto <bb 9>; [0.00%]

[100%]

COUNT:1<bb 8>:

iftmp.4_20 = PHI <_66(7), 0xFFFFFFFFFFFFFFF(6)> // If overflow did not happen, use size computed, otherwise allocate 2^63 bytes

_71 = iftmp.4_20 * 8; // Recompute number of elements back to bytes

_72 = operator new (_71); // Allocate

[0%]

[100%]

COUNT:1<bb 9>:

iftmp.5_23 = PHI <0B(7), _72(8)> // Redundant: If we are allocating 0 byte vector, address will be 0; otherwise it is return value of new

iftmp.4_81 = PHI <__len_65(7), iftmp.4_20(8)> // Redundant: If we are allocating 0 byte vector, length will be 0

_1 = (long unsigned int) _63; // Construct new pair and write it to right position

_2 = iftmp.5_23 + _1;

*_2 = *__args#0_22;
goto <bb 11>; [100.00%]

[0%]

[100%]

[100%]

[100%]

COUNT:0<bb 16>:

_10 = this->D.26791._M_impl.D.26098._M_end_of_storage;

_11 = _10 - _54;

_73 = (long unsigned int) _11;

operator delete (_54, _73);

[0%]

COUNT:1<bb 17>:

this->D.26791._M_impl.D.26098._M_start = iftmp.5_23;

this->D.26791._M_impl.D.26098._M_finish = __cur_80;

_14 = iftmp.4_81 * 8;

_15 = iftmp.5_23 + _14;

this->D.26791._M_impl.D.26098._M_end_of_storage = _15;

return;

[100%]

[100%]

[100%]

8 / 20

Why M realloc insert is not inlined?

1. 376 bytes of x86-64 assembly

2. 111 instructions

3. After early optimization GCC
thinks it will be 48 “instructions”

4. Inline limit: 15 for -O2, 30 for -O3

5. Declaring it inline bumps limit to
70 for -O2, 200 for -O3

Declaring M realloc insert inline
works, but bloats code.

(This is what Clang’s libc++ does)

std::vector<std::pair<unsigned int, unsigned int> >::_M_realloc_insert<const std::pair<unsigned int, unsigned int>&> ()

loop (copy tail of the vector after new element; redundant for push_back)

loop (copy initial part of vector up to new element; should be memcpy)

COUNT:1<bb 14>:

__first_34 = PHI <__position_42(12), __first_36(13)>

__cur_35 = PHI <_67(12), __cur_37(13)>

if (__first_34 != _55)
 goto <bb 13>; [0.00%]
else
 goto <bb 15>; [100.00%]

COUNT:0<bb 13>:

MEM[(struct pair *)__cur_35] = MEM[(struct pair &)__first_34];

__first_36 = __first_34 + 8;

__cur_37 = __cur_35 + 8;

[0%]

COUNT:1<bb 15>:

_61 = (unsigned long) _55;

_62 = _61 - _79;

__cur_80 = _67 + _62; // New end of vector

if (_54 != 0B) // If vector was non-empty it needs destruction
 goto <bb 16>; [0.00%]
else
 goto <bb 17>; [100.00%]

[100%] [100%]

COUNT:1<bb 11>:

__first_38 = PHI <_54(9), __first_40(10)>

__cur_39 = PHI <iftmp.5_23(9), _78(10)>

if (__first_38 != __position_42)
 goto <bb 10>; [0.00%]
else
 goto <bb 12>; [100.00%]

COUNT:0<bb 10>:

_78 = __cur_39 + 8;

MEM[(struct pair *)_78 + -8B] = MEM[(struct pair &)__first_38];

__first_40 = __first_38 + 8;

[0%]

COUNT:1<bb 12>:

_79 = (unsigned long) __position_42;

_77 = (unsigned long) _54;

_76 = _79 + 8;

_41 = _76 - _77;

_67 = iftmp.5_23 + _41;
goto <bb 14>; [100.00%]

[100%] [100%]

ENTRY

EXIT

COUNT:1<bb 2>:

__position_42 = MEM[(struct __normal_iterator *)&__position]; // where value should be inserted

_54 = this->_M_impl._M_start; // start of vector

_55 = this->_M_impl._M_finish; // end of vector

_58 = _55 - _54;

_59 = _58 /[ex] 8;

_60 = (long unsigned int) _59; // size of vector in elements

if (_60 == 0xFFFFFFFFFFFFFFF) // will it overflow 64bit address space?
 goto <bb 3>; [0.00%]
else
 goto <bb 4>; [100.00%]

[100%]

COUNT:0<bb 3>:

std::__throw_length_error ("vector::_M_realloc_insert");

[0%]

COUNT:1<bb 4>:

_64 = min (_60, 1(5)) // if vector is empty be sure it grows to size 1

_52 = .ADD_OVERFLOW (_60, _64); // double the vector size

__len_65 = REALPART_EXPR <_52>; // doubled value

_50 = IMAGPART_EXPR <_52>; // nonzero on overflow

_63 = __position_42 - _54;

if (_50 != 0) // Did it overflow?
 goto <bb 8>; [0.00%]
else
 goto <bb 7>; [100.00%]

[100%]

COUNT:1<bb 7>:

_66 = MIN_EXPR <__len_65, 0xFFFFFFFFFFFFFFF> // Be sure to fit in 64bit address space;

if (__len_65 != 0) // Redundant check for resulting length being 0
 goto <bb 8>; [100.00%]
else
 goto <bb 9>; [0.00%]

[100%]

COUNT:1<bb 8>:

iftmp.4_20 = PHI <_66(7), 0xFFFFFFFFFFFFFFF(6)> // If overflow did not happen, use size computed, otherwise allocate 2^63 bytes

_71 = iftmp.4_20 * 8; // Recompute number of elements back to bytes

_72 = operator new (_71); // Allocate

[0%]

[100%]

COUNT:1<bb 9>:

iftmp.5_23 = PHI <0B(7), _72(8)> // Redundant: If we are allocating 0 byte vector, address will be 0; otherwise it is return value of new

iftmp.4_81 = PHI <__len_65(7), iftmp.4_20(8)> // Redundant: If we are allocating 0 byte vector, length will be 0

_1 = (long unsigned int) _63; // Construct new pair and write it to right position

_2 = iftmp.5_23 + _1;

*_2 = *__args#0_22;
goto <bb 11>; [100.00%]

[0%]

[100%]

[100%]

[100%]

COUNT:0<bb 16>:

_10 = this->D.26791._M_impl.D.26098._M_end_of_storage;

_11 = _10 - _54;

_73 = (long unsigned int) _11;

operator delete (_54, _73);

[0%]

COUNT:1<bb 17>:

this->D.26791._M_impl.D.26098._M_start = iftmp.5_23;

this->D.26791._M_impl.D.26098._M_finish = __cur_80;

_14 = iftmp.4_81 * 8;

_15 = iftmp.5_23 + _14;

this->D.26791._M_impl.D.26098._M_end_of_storage = _15;

return;

[100%]

[100%]

[100%]

8 / 20

Optimizing M realloc insert

M realloc insert (GCC 13)

std::vector<std::pair<unsigned int, unsigned int> >::_M_realloc_insert<const std::pair<unsigned int, unsigned int>&> ()

loop (copy tail of the vector after new element; redundant for push_back)

loop (copy initial part of vector up to new element; should be memcpy)

COUNT:1<bb 14>:

__first_34 = PHI <__position_42(12), __first_36(13)>

__cur_35 = PHI <_67(12), __cur_37(13)>

if (__first_34 != _55)
 goto <bb 13>; [0.00%]
else
 goto <bb 15>; [100.00%]

COUNT:0<bb 13>:

MEM[(struct pair *)__cur_35] = MEM[(struct pair &)__first_34];

__first_36 = __first_34 + 8;

__cur_37 = __cur_35 + 8;

[0%]

COUNT:1<bb 15>:

_61 = (unsigned long) _55;

_62 = _61 - _79;

__cur_80 = _67 + _62; // New end of vector

if (_54 != 0B) // If vector was non-empty it needs destruction
 goto <bb 16>; [0.00%]
else
 goto <bb 17>; [100.00%]

[100%] [100%]

COUNT:1<bb 11>:

__first_38 = PHI <_54(9), __first_40(10)>

__cur_39 = PHI <iftmp.5_23(9), _78(10)>

if (__first_38 != __position_42)
 goto <bb 10>; [0.00%]
else
 goto <bb 12>; [100.00%]

COUNT:0<bb 10>:

_78 = __cur_39 + 8;

MEM[(struct pair *)_78 + -8B] = MEM[(struct pair &)__first_38];

__first_40 = __first_38 + 8;

[0%]

COUNT:1<bb 12>:

_79 = (unsigned long) __position_42;

_77 = (unsigned long) _54;

_76 = _79 + 8;

_41 = _76 - _77;

_67 = iftmp.5_23 + _41;
goto <bb 14>; [100.00%]

[100%] [100%]

ENTRY

EXIT

COUNT:1<bb 2>:

__position_42 = MEM[(struct __normal_iterator *)&__position]; // where value should be inserted

_54 = this->_M_impl._M_start; // start of vector

_55 = this->_M_impl._M_finish; // end of vector

_58 = _55 - _54;

_59 = _58 /[ex] 8;

_60 = (long unsigned int) _59; // size of vector in elements

if (_60 == 0xFFFFFFFFFFFFFFF) // will it overflow 64bit address space?
 goto <bb 3>; [0.00%]
else
 goto <bb 4>; [100.00%]

[100%]

COUNT:0<bb 3>:

std::__throw_length_error ("vector::_M_realloc_insert");

[0%]

COUNT:1<bb 4>:

_64 = min (_60, 1(5)) // if vector is empty be sure it grows to size 1

_52 = .ADD_OVERFLOW (_60, _64); // double the vector size

__len_65 = REALPART_EXPR <_52>; // doubled value

_50 = IMAGPART_EXPR <_52>; // nonzero on overflow

_63 = __position_42 - _54;

if (_50 != 0) // Did it overflow?
 goto <bb 8>; [0.00%]
else
 goto <bb 7>; [100.00%]

[100%]

COUNT:1<bb 7>:

_66 = MIN_EXPR <__len_65, 0xFFFFFFFFFFFFFFF> // Be sure to fit in 64bit address space;

if (__len_65 != 0) // Redundant check for resulting length being 0
 goto <bb 8>; [100.00%]
else
 goto <bb 9>; [0.00%]

[100%]

COUNT:1<bb 8>:

iftmp.4_20 = PHI <_66(7), 0xFFFFFFFFFFFFFFF(6)> // If overflow did not happen, use size computed, otherwise allocate 2^63 bytes

_71 = iftmp.4_20 * 8; // Recompute number of elements back to bytes

_72 = operator new (_71); // Allocate

[0%]

[100%]

COUNT:1<bb 9>:

iftmp.5_23 = PHI <0B(7), _72(8)> // Redundant: If we are allocating 0 byte vector, address will be 0; otherwise it is return value of new

iftmp.4_81 = PHI <__len_65(7), iftmp.4_20(8)> // Redundant: If we are allocating 0 byte vector, length will be 0

_1 = (long unsigned int) _63; // Construct new pair and write it to right position

_2 = iftmp.5_23 + _1;

*_2 = *__args#0_22;
goto <bb 11>; [100.00%]

[0%]

[100%]

[100%]

[100%]

COUNT:0<bb 16>:

_10 = this->D.26791._M_impl.D.26098._M_end_of_storage;

_11 = _10 - _54;

_73 = (long unsigned int) _11;

operator delete (_54, _73);

[0%]

COUNT:1<bb 17>:

this->D.26791._M_impl.D.26098._M_start = iftmp.5_23;

this->D.26791._M_impl.D.26098._M_finish = __cur_80;

_14 = iftmp.4_81 * 8;

_15 = iftmp.5_23 + _14;

this->D.26791._M_impl.D.26098._M_end_of_storage = _15;

return;

[100%]

[100%]

[100%]

M realloc append (GCC 14)

std::vector<std::pair<unsigned int, unsigned int> >::_M_realloc_append<const std::pair<unsigned int, unsigned int>&> ()

loop 1

COUNT:1<bb 8>:

__first_22 = PHI <_33(6), __first_24(7)>

__cur_23 = PHI <_50(6), _40(7)>

if (__first_22 != _34)
 goto <bb 7>; [0.00%]
else
 goto <bb 9>; [100.00%]

COUNT:0<bb 7>:

_40 = __cur_23 + 8;

MEM[(struct pair *)_40 + -8B] = MEM[(struct pair &)__first_22];

__first_24 = __first_22 + 8;

[0%]

COUNT:1<bb 9>:

_11 = (sizetype) _50;

_16 = (unsigned long) _34;

_25 = (unsigned long) _33;

_47 = _16 + 8;

_46 = _47 - _25;

_5 = _11 + _46;

_12 = (struct pair *) _5;

if (_33 != 0B)
 goto <bb 10>; [0.00%]
else
 goto <bb 11>; [100.00%]

[100%] [100%]

ENTRY

EXIT

COUNT:1<bb 2>:

_33 = this->_M_impl._M_start; // start of vector

_34 = this->_M_impl._M_finish; // end of vector

_37 = _34 - _33;

_38 = _37 /[ex] 8;

_39 = (long unsigned int) _38;// size of vectorin elements

if (_39 == 0xFFFFFFFFFFFFFFF)
 goto <bb 3>; [0.00%]
else
 goto <bb 4>; [100.00%]

[100%]

COUNT:0<bb 3>:

std::__throw_length_error ("vector::_M_realloc_append");

[0%]

COUNT:1<bb 4>:

_42 = MAX_EXPR <_39, 1>;

_15 = .ADD_OVERFLOW (_39, _42);

__len_43 = REALPART_EXPR <_15>;

_58 = IMAGPART_EXPR <_15>;

if (_58 != 0)
 goto <bb 6>; [0.00%]
else
 goto <bb 5>; [100.00%]

[100%]

COUNT:1<bb 5>:

_44 = MIN_EXPR <__len_43, 0xFFFFFFFFFFFFFFF>;

[100%]

COUNT:1<bb 6>:

iftmp.4_45 = PHI 0xFFFFFFFFFFFFFFF(4), _44(5)>

_49 = iftmp.4_45 * 8;

_50 = operator new (_49);

_1 = (long unsigned int) _37;

_2 = _50 + _1;

*_2 = *__args#0_14;
goto <bb 8>; [100.00%]

[0%]

[100%]

[100%]

COUNT:0<bb 10>:

_3 = this->D.26988._M_impl.D.26289._M_end_of_storage;

_4 = _3 - _33;

_21 = (long unsigned int) _4;

operator delete (_33, _21);

[0%]

COUNT:1<bb 11>:

this->D.26988._M_impl.D.26289._M_start = _50;

this->D.26988._M_impl.D.26289._M_finish = _12;

_6 = _50 + _49;

this->D.26988._M_impl.D.26289._M_end_of_storage = _6;

return;

[100%]

[100%]

[100%]

376 → 257 bytes (46% less)
111 → 76 instructions (46% less)

(Clang-18 472; 99 instructions)

9 / 20

PR109849 suboptimal code for vector walking loop

Some commits solving this problem:

▶ optimize std::vector::push back

▶ Use memcpy instead of memmove in
relocate a 1

▶ PR110377 Early VRP and IPA-PROP
should work out value ranges from
builtin unreachable

▶ Analyze SRA candidates in
ipa-fnsummary

▶ optimize std::max early

▶ Fix profile of forwarders produced by
cd-dce

▶ Add cold attribute to throw wrappers
and terminate

▶ Compute ipa-predicates for
conditionals involving
builtin expect p

▶ Fix handling of
builtin expect with probability

and improve first-match heuristics

▶ R. Biener: optimize code hoisting

▶ M. Jambor: SRA of non-escaped
aggregates passed by reference to
calls

▶ PR110378 IPA-SRA for destructors
1. M. Jambor: Don’t consider CLOBBERS as writes

preventing splitting
2. M. Jambor: Allow IPA-SRA in presence of returns

which will be removed

▶ M. Jambor: Avoid returns of
references to SRA candidates

10 / 20

PR109849 suboptimal code for vector walking loop

Some commits solving this problem:

▶ optimize std::vector::push back

▶ Use memcpy instead of memmove in
relocate a 1

▶ PR110377 Early VRP and IPA-PROP
should work out value ranges from
builtin unreachable

▶ Analyze SRA candidates in
ipa-fnsummary

▶ optimize std::max early

▶ Fix profile of forwarders produced by
cd-dce

▶ Add cold attribute to throw wrappers
and terminate

Recognize pattern

size t len = M check len(...);

if (len <= 0)

builtin unreachable ();

and make GCC realize that length is
always positive. Propagate this
information across returned values.

▶ Compute ipa-predicates for
conditionals involving
builtin expect p

▶ Fix handling of
builtin expect with probability

and improve first-match heuristics

▶ R. Biener: optimize code hoisting

▶ M. Jambor: SRA of non-escaped
aggregates passed by reference to
calls

▶ PR110378 IPA-SRA for destructors
1. M. Jambor: Don’t consider CLOBBERS as writes

preventing splitting
2. M. Jambor: Allow IPA-SRA in presence of returns

which will be removed

▶ M. Jambor: Avoid returns of
references to SRA candidates

10 / 20

PR109849 suboptimal code for vector walking loop

Some commits solving this problem:

▶ optimize std::vector::push back

▶ Use memcpy instead of memmove in
relocate a 1

▶ PR110377 Early VRP and IPA-PROP
should work out value ranges from
builtin unreachable

▶ Analyze SRA candidates in
ipa-fnsummary

▶ optimize std::max early

▶ Fix profile of forwarders produced by
cd-dce

▶ Add cold attribute to throw wrappers
and terminate

It turns out LLVM inlines
M realloc append due to
multiple-accounting bug predicting SRA
optimization. I fixed GCC to account it
correctly, but that is not enough to get
function inlined.

▶ Compute ipa-predicates for
conditionals involving
builtin expect p

▶ Fix handling of
builtin expect with probability

and improve first-match heuristics

▶ R. Biener: optimize code hoisting

▶ M. Jambor: SRA of non-escaped
aggregates passed by reference to
calls

▶ PR110378 IPA-SRA for destructors
1. M. Jambor: Don’t consider CLOBBERS as writes

preventing splitting
2. M. Jambor: Allow IPA-SRA in presence of returns

which will be removed

▶ M. Jambor: Avoid returns of
references to SRA candidates

10 / 20

PR109849 suboptimal code for vector walking loop

Some commits solving this problem:

▶ optimize std::vector::push back

▶ Use memcpy instead of memmove in
relocate a 1

▶ PR110377 Early VRP and IPA-PROP
should work out value ranges from
builtin unreachable

▶ Analyze SRA candidates in
ipa-fnsummary

▶ optimize std::max early

▶ Fix profile of forwarders produced by
cd-dce

▶ Add cold attribute to throw wrappers
and terminate

Recognize conditional memory load
produced by:

template< class T >

T& max(T& a, T& b);

And turn it into actual max operation.

▶ Compute ipa-predicates for
conditionals involving
builtin expect p

▶ Fix handling of
builtin expect with probability

and improve first-match heuristics

▶ R. Biener: optimize code hoisting

▶ M. Jambor: SRA of non-escaped
aggregates passed by reference to
calls

▶ PR110378 IPA-SRA for destructors
1. M. Jambor: Don’t consider CLOBBERS as writes

preventing splitting
2. M. Jambor: Allow IPA-SRA in presence of returns

which will be removed

▶ M. Jambor: Avoid returns of
references to SRA candidates

10 / 20

PR109849 suboptimal code for vector walking loop

Some commits solving this problem:

▶ optimize std::vector::push back

▶ Use memcpy instead of memmove in
relocate a 1

▶ PR110377 Early VRP and IPA-PROP
should work out value ranges from
builtin unreachable

▶ Analyze SRA candidates in
ipa-fnsummary

▶ optimize std::max early

▶ Fix profile of forwarders produced by
cd-dce

▶ Add cold attribute to throw wrappers
and terminate

▶ Compute ipa-predicates for
conditionals involving
builtin expect p

▶ Fix handling of
builtin expect with probability

and improve first-match heuristics

▶ R. Biener: optimize code hoisting

▶ M. Jambor: SRA of non-escaped
aggregates passed by reference to
calls

▶ PR110378 IPA-SRA for destructors
1. M. Jambor: Don’t consider CLOBBERS as writes

preventing splitting
2. M. Jambor: Allow IPA-SRA in presence of returns

which will be removed

▶ M. Jambor: Avoid returns of
references to SRA candidates

10 / 20

PR109849 suboptimal code for vector walking loop

Some commits solving this problem:

▶ optimize std::vector::push back

▶ Use memcpy instead of memmove in
relocate a 1

▶ PR110377 Early VRP and IPA-PROP
should work out value ranges from
builtin unreachable

▶ Analyze SRA candidates in
ipa-fnsummary

▶ optimize std::max early

▶ Fix profile of forwarders produced by
cd-dce

▶ Add cold attribute to throw wrappers
and terminate

▶ Compute ipa-predicates for
conditionals involving
builtin expect p

▶ Fix handling of
builtin expect with probability

and improve first-match heuristics

▶ R. Biener: optimize code hoisting

▶ M. Jambor: SRA of non-escaped
aggregates passed by reference to
calls

▶ PR110378 IPA-SRA for destructors
1. M. Jambor: Don’t consider CLOBBERS as writes

preventing splitting
2. M. Jambor: Allow IPA-SRA in presence of returns

which will be removed

▶ M. Jambor: Avoid returns of
references to SRA candidates

10 / 20

PR109849 suboptimal code for vector walking loop

Some commits solving this problem:

▶ optimize std::vector::push back

▶ Use memcpy instead of memmove in
relocate a 1

▶ PR110377 Early VRP and IPA-PROP
should work out value ranges from
builtin unreachable

▶ Analyze SRA candidates in
ipa-fnsummary

▶ optimize std::max early

▶ Fix profile of forwarders produced by
cd-dce

▶ Add cold attribute to throw wrappers
and terminate

▶ Compute ipa-predicates for
conditionals involving
builtin expect p

▶ Fix handling of
builtin expect with probability

and improve first-match heuristics

▶ R. Biener: optimize code hoisting

▶ M. Jambor: SRA of non-escaped
aggregates passed by reference to
calls

▶ PR110378 IPA-SRA for destructors
1. M. Jambor: Don’t consider CLOBBERS as writes

preventing splitting
2. M. Jambor: Allow IPA-SRA in presence of returns

which will be removed

▶ M. Jambor: Avoid returns of
references to SRA candidates 10 / 20

Loop of the simple testcase compiled by GCC13

11 / 20

Loads and stores in the loop of the simple testcase (GCC 13)

12 / 20

Loads and stores in the loop of the simple testcase (GCC 14)

13 / 20

Scalar replacement of Aggregates (SRA)

s t r u c t Z
{

i n t i ;
shor t j , k ;

} ;

i n t f oo (vo id)
{

s t r u c t Z z ;
f o r (z . i = 0 ; z . i < bound ; z . i++)

{
z . j = foo () ;
/∗ . . . ∗/

}
}

i n t f oo (vo id)
{

i n t z $ i ; shor t z$ j ;
f o r (z $ i = 0 ; z $ i < bound ; z $ i++)

{
z$ j = foo () ;
/∗ . . . ∗/

}
}

14 / 20

Scalar replacement of Aggregates (2)

s t r u c t Z
{

i n t i ;
shor t j , k ;

} ;

i n t f oo (vo id)
{

s t r u c t Z z ;
f o r (z . i = 0 ; z . i < bound ; z . i++)

{
z . j = foo () ;
/∗ . . . ∗/
bar (z) ;
/∗ . . . ∗/

}
}

i n t f oo (vo id)
{

s t r u c t Z z ; i n t z $ i ; shor t z$ j ;
f o r (z $ i = 0 ; z $ i < bound ; z $ i++)

{
z$ j = foo () ;
/∗ . . . ∗/
z . i = z $ i ;
z . j = z$ j ;
bar (z) ;
/∗ . . . ∗/

}
} 15 / 20

Scalar replacement of Aggregates (3)

i n t f oo (vo id)
{

s t r u c t Z z ;
f o r (z . i = 0 ; z . i < bound ; z . i++)

{
z . j = foo () ;
/∗ . . . ∗/
bar (&z) ;
/∗ . . . ∗/

}
/∗ . . . ∗/

}

i n t f oo (vo id)
{

s t r u c t Z z ; i n t z $ i ; shor t z$ j ;
f o r (z $ i = 0 ; z $ i < bound ; z $ i++)

{
z$ j = foo () ;
/∗ . . . ∗/
z . i = z $ i ;
z . j = z$ j ;
bar (&z) ;
z $ i = z . i ;
z$ j = z . j ;
/∗ . . . ∗/

}
/∗ . . . ∗/

}

16 / 20

Scalar replacement of Aggregates (3)

i n t f oo (vo id)
{

s t r u c t Z z ;
f o r (z . i = 0 ; z . i < bound ; z . i++)

{
z . j = foo () ;
/∗ . . . ∗/
bar (&z) ;
/∗ . . . ∗/

}
/∗ . . . ∗/

}

i n t f oo (vo id)
{

s t r u c t Z z ; i n t z $ i ; shor t z$ j ;
f o r (z $ i = 0 ; z $ i < bound ; z $ i++)

{
z$ j = foo () ;
/∗ . . . ∗/
z . i = z $ i ;
z . j = z$ j ;
bar (&z) ;
z $ i = z . i ;
z$ j = z . j ;
/∗ . . . ∗/

}
/∗ . . . ∗/

}

16 / 20

Disqualification of candidates for SRA

− /∗ Al low cons tant−poo l e n t r i e s t ha t ”need to l i v e i n memory ” . ∗/
− i f (n e e d s t o l i v e i n memo r y (va r) && ! c o n s t a n t d e c l p (va r))
+
+ i f ((i s g l o b a l v a r (va r)
+ | | (TREE ADDRESSABLE (va r)
+ && p t s o l u t i o n i n c l u d e s (&cfun−>g imp l e d f−>e s c ap ed r e t u r n , va r))
+ | | (TREE CODE (va r) == RESULT DECL
+ && !DECL BY REFERENCE (va r)
+ && agg r e g a t e v a l u e p (var , c u r r e n t f u n c t i o n d e c l)))
+ /∗ Al low cons tant−poo l e n t r i e s t ha t ”need to l i v e i n memory ” . ∗/
+ && ! c o n s t a n t d e c l p (va r))

17 / 20

Call graph after interprocedural optimization

test

operator delete

_M_realloc_insert

__throw_length_error operator new

main

18 / 20

Benchmark runtime and size (GCC vs Clang; libstdc++ vs libc++)

19 / 20

Benchmark runtime and size (GCC vs Clang; libstdc++ vs libc++)

19 / 20

Future work

Work in progress

▶ PR114821 M realloc append should use memcpy instead of loop to copy data
when possible

▶ PR114822 ldist should produce memcpy/memset/memmove histograms based on
loop information converted

TODO

▶ PR110379 Unnecessary copies after early opts (unsolved)

▶ PR110414 Dead Code Elimination Regression since r14-1127-g9e2017ae6ac
(unsolved)

▶ Adding -fsane-operator-new command line option?

▶ Can we do enought of inter-procedural optimization to figure out that the testcase
reallocates the vector just once?

▶ What about other libstdc++ datastructures?

20 / 20

