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EPPA C0 CF Summary

Definition (Extension property for partial automorphisms)

A class C of finite L-structures has extension property for partial automorphisms (EPPA
or Hrushovski property) iff for every A ∈ C

there exists EPPA witness B ∈ C containing
A

such that every partial automorphism of A

extends to automorphism of B.

Partial automorphism is any isomorphism between two substructures.

A

Example (Classes with EPPA)

1 Graphs (Hrushovski 1992)

Ramsey with free linear order (Nešetřil-Rödl 1977, Abramson-Harrington 1978)

2 Relational structures (Herwig 1998)

Ramsey with free linear order (N. R. 1977, A.H. 1978)

3 Classes described by finite forbidden homomorphisms (Herwig-lascar 2000)

Ramsey with free linear order (H.-Nešetřil 2016)

4 Free amalgamation classes (Hodkinson and Otto 2003)

Ramsey with free linear order (Nešetřil-Rödl 1977)

5 Metric spaces (Solecki 2005, Vershik 2008)

Ramsey with free linear order (Nešetřil 2005)

6 Generalisations and specialisations of metric spaces (Conant 2015)

Ramsey with convex linear order (Nguyen Van Thé 2010, H.-Nešetřil 2016)
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Ramsey with free linear order (Nešetřil-Rödl 1977, Abramson-Harrington 1978)

2 Relational structures (Herwig 1998)

Ramsey with free linear order (N. R. 1977, A.H. 1978)

3 Classes described by finite forbidden homomorphisms (Herwig-lascar 2000)

Ramsey with free linear order (H.-Nešetřil 2016)
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Hrushovski (predimension) construction

• Predimension of a graph G = (V ,E) is δ(G) = 2|V | − |E |.

Example
δ(K1) = 2 δ(K2) = 4− 1 = 3 δ(K3) = 6− 3 = 3
δ(K4) = 8− 6 = 2 δ(K5) = 10− 10 = 0 δ(K6) = 12− 30 = −18.

• Finite graph G is in C0 iff ∀H⊆Gδ(H) ≥ 0.

• G ⊆ H is self-sufficient iff ∀G⊆G′⊆Hδ(G) ≤ δ(G′).

Definition (Amalgamation property of class K)

A

B

B′

C

Lemma
C0 is closed for free amalgamation over
self-sufficient substructures.

Proof.
δ(C) = δ(B) + δ(B′)− δ(A).

A

B

B′

C

=⇒ C0 has a generalized
Fraïssé limit M0.
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Hrushovski property of Hrushovski construction

EPPA (with joint embedding) is a stronger form of amalgamation.

A

B

B′

C

B

B′

Question
Does class C0 have EPPA (or a Hrushovski property) for partial automorphisms of
self-sufficient substructures?

No!

Simple counter-example appears in disertation of Zaniar Ghadernezhad (2013).

In this talk we aim to understand the situation better.
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Orientations C0

Recall:
• Predimension of a graph G = (V ,E) is δ(G) = 2|V | − |E |.
• Finite graph G is in C0 iff ∀H⊆Gδ(H) ≥ 0.

Lemma (By marriage theorem)

• G ∈ C0 iff it has 2-orientation (out-degrees at most 2).
• H is self sufficient in G iff G can be 2-oriented with no edge from H to G \ H.

Corollary

C0 is, equivalently, created from class D0 of all finite 2-orientations by forgetting the
orientation.

D0 is closed for free amalgamation over successor-closed substructures.
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Hrushovski classes has no Hrushovski property

We use:

Theorem (Kechris, Rosendal 2007)

Suppose K is an amalgamation class of finite structures with (generalised) Fraïssé limit
M. Let Γ = Aut(M). Suppose K has EPPA then Γ is amenable.

Recall: A topological group Γ is amenable if, whenever Y is a Γ-flow, then there is a
Borel probability measure µ on Y which is invariant under the action of Γ.

. . . and show:

Theorem (Evans, H., Nešetřil, 2019)

Let M0 be a generalised Fraïssé limit of C0. Aut(M0) is not amenable.

As a consequence of the two theorems C0 has no EPPA.
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Non-amenability of M0

Theorem (Evans, H., Nešetřil, 2019)

Let M be an 2-orientable graph and Γ is a topological group which acts continuously on
M. Suppose there are adjacent vertices a, b in M such that the Γa-orbit containing b
and the Γb-orbit containing a are both infinite. Then Γ is not amenable.

Proof.

1 Suppose, for a contradiction, that µ is a Γ-invariant Borel probability measure on
the Γ-flow XM of 2-orientations. Let a, b be as in the statement.

2 Consider the open set Sab = {S ∈ XM : there is an edge oriented a→ b}.
3 As Sab ∪ Sba = XM we may assume that µ(Sab) = p 6= 0.

4 For r ∈ N, let b1, . . . , br be distinct elements of the Ga-orbit containing b. So
µ(Sabi ) = p for each i ≤ r . Let si be the characteristic function of Sabi .

5 Then for every 2-orientation S ∈ XΓ we have
∑

i≤r si (S) ≤ 2.

Thus
∫

S∈XM

∑
i≤r

si (S) dµ(S) ≤ 2. However
∫

S∈XM

si (S)dµ(S) = p.

therefore rp ≤ 2. As p 6= 0 and r is unbounded, this is a contradiction.

This is David Evans’ argument generalised by Todor Tsankov.
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EPPA C0 CF Summary

Does D0 have EPPA?

Question
Does class D0 (of all 2-orientations) have EPPA for partial automorphisms of
successor-closed substructures?

Yes!
We generalise notion of L-structures to represent self-sufficient substructures by
functions.
Let L be a language and A L-structure with domain A. Then function FA is from
n-tuples of elements of A to subsets of A.

FA : Aa → P(A).

In this context D0 is a free amalgamation class of structures in language with single
unary function F mapping every vertex to set of its successors in the 2-orientation.

Theorem (Evans, H., Nešetřil 2018+)

Let L be a language consisting of relations and unary functions and K a free
amalgamation class of L-structures. Then K has EPPA.

This is a strengthening of earlier result of Hodkinson and Otto for relational languages.
Open for functions of arbitrary arity.

Question
What is maximal amenable subgroup of Aut(M0)?
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EPPA C0 CF Summary

The ω-categorical case

• F : R≥0 → R≥0

• C0 = {B : δ(A) ≥ 0 for all A ⊆ B}.
CF = {B : δ(A) ≥ F (|A|) for all A ⊆ B}.

• A is self-sufficient in B iff δ(A) ≤ δ(B′) for all finite B′ with A ⊂ B′ ⊆ B.
A is d-closed in B iff δ(A) < δ(B′) for all finite B′ with A ⊂ B′ ⊆ B.

Lemma
Put F (x) = ln(x). Then CF is a free amalgamation class over d-closed substructures.

Proof.

A

B

B′

C
A

δ(G)

|G|

B
B′

C

Again there exists a generalized Fraïssé limit MF .
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Successor-d-closure

Denote by rootsA(B) the set of all roots of A reachable from B ⊆ A.

Lemma (H., Evans, Nešetřil, 2019)

Let B ⊆ A be 2-orientations. Then B is both d-closed and successor-closed in A iff

B = {v : rootsA(v) ⊆ rootsA(B)}.

Recall: B is d-closed in A iff δ(B) < δ(B′) for all B′ s.t. B ⊂ B′ ⊆ A.

Proof.

• Given B vs A, δ(B) is the number of roots of
out-degree 1 + twice number of roots of
out-degree 0.

• Extending B by all vertices v such that
rootsA(v) ⊆ rootsA(B) does not affect δ.

• Extending B by any other vertex increases δ.
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EPPA C0 CF Summary

Free amalgamation class of 2-orientations of CF

1 Denote by DF the class of all 2-orientations. It is an amalgamation class for
successor-d-closed substructures.

2 DF is a free amalgamation class in language with functions:

Language L+ consists of a function symbol F of arity 1 and function symbols Fi of
arity i for every i ≥ 1.

1 For every vertex v we put F (v) to be the set of all vertices v ′ such that there
is edge v → v ′.

2 For every n-tuple r̄ of distinct root vertices we define Fn(r̄) to be the set of all
vertices v such that roots(v) is precisely r̄ .

3 Functions Fn(r̄) = ∅ otherwise
(set valued functions give free amalgamation good meaning).

Can we prove EPPA for a special case of free amalgamation class with non-unary
functions?
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EPPA C0 CF Summary

Symmetric version of L-structures with partial functions and
permutation of the language

• Let L be a language with relation symbols and function symbols each with arity
denoted by a(R) and a(F ).

• We consider multiple-valued functions: for function symbol F ∈ L, L-structure A,
x ∈ A we put F A(x) ⊆ A.

• Let ΓL be a permutation group on L which preserves types and arities of all
symbols. We will say that ΓL is a language equipped with a permutation group.
(This generalise Herwig’s notion of a permomorphism.)

We consider ΓL-structures which are essentially L-structures with the following
definition of homomorphism:

Definition
A homomorphism f : A→ B is a pair f = (fL, fA) where fL ∈ ΓL and fA is a mapping
A→ B such that for every R ∈ LR and F ∈ LF we have:
(a) (x1, x2, . . . , xa(R )) ∈ RA =⇒ (fA(x1), fA(x2), . . . , fA(xa(R ))) ∈ fL(R)B, and,

(b) fA(FA(x1, c2, . . . , xa(F ))) ⊆ fL(F )B(fA(x1), fA(x2), . . . , fA(xa(F ))).

Notion of embedding, homomorphism-embedding, substructure generalise naturally to
this category.
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EPPA for DF

Theorem (H., Konečný, Nešetřil 2019+)

Let ΓL be a language equipped with a permutation group consisting of relations and
unary functions and K a free amalgamation class of ΓL-structures. Then K has EPPA.
Moreover for every A ∈ K the EPPA witness B ∈ K can be constructed such that every
irreducible substructure of B is isomorphic to a substructure of A.

Theorem (H., Konečný, Nešetřil 2019+)

The class DF has EPPA for the successor-d-closed substructures

Proof.

1 Given A ∈ DF ⊆ D0 construct B ∈ D0 such that every partial automorphism of
successor-closed substructures extend to an automorphism of B.
(This is done by the easy construction shown earlier)

2 Define language L+ adding for every root vertex v ∈ B and every ordering r̄ of
|roots(v)| a new relational symbol Rv,r̄ of arity |roots(v)|.

3 Define ΓL+ using the automorphism group of B.

4 Construct ΓL+ structure A+ by removing all non-root vertices and putting r̄ ∈ Rv,r̄
A

for every non-root v ∈ A and r̄ an ordering of roots(v).

5 A+ has only unary functions! Construct EPPA witness B+.

6 Construct B′ corresponding to B+ by adding the non-root vertices.
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Let ΓL be a language equipped with a permutation group consisting of relations and
unary functions and K a free amalgamation class of ΓL-structures. Then K has EPPA.
Moreover for every A ∈ K the EPPA witness B ∈ K can be constructed such that every
irreducible substructure of B is isomorphic to a substructure of A.

Theorem (H., Konečný, Nešetřil 2019+)
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Summary and open problems

• We can describe amenable subgroup of both Aut(M0) and Aut(MF ) by means of
orientations and show EPPA. Our constructions generalise to some other variants
of classes obtained by Hrushovski predimension constructions.

• For related class of acyclic orientations we know that such subgroup is maximal
amenable subgroup. Maximality for Aut(M0) and Aut(MF ) are open.

• Techniques developed here can be applied to solve several other cases, such as
EPPA for two-graphs, antipodal metric spaces, n-partite tournaments,
semigeneric tournaments, . . .

• We can also give simpler proofs for EPPA for metric spaces and other strong
amalgamation classes

• ΓL-languages and functions combine well with conditions given by Herwig-Lascar
theorem leading to so far strongest sufficient structural condition for EPPA.

However many open questions remain
• does the class of all finite tournaments have EPPA?

This is a classical open question in the are asked by Herwig and Lascar
• Does the class of all finite partial Steiner systems (or structures with non-unary

functions in general) have EPPA?
• Does the class of all finite structures with one quaternary relation defining two

equivalence classes on pairs have EPPA?
• Can we obtain general structural condition for the existence of EPPA?
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