Explicit construction of universal structures

Jan Hubička
Charles University
Prague
Joint work with Jarik Nešetřil

Workshop on Homogeneous Structures 2011
By relational structures we mean graphs, oriented graphs, colored graphs, hypergraphs etc.

We consider only finite or countable relational structures.
By relational structures we mean graphs, oriented graphs, colored graphs, hypergraphs etc.

We consider only finite or countable relational structures.

Let C be class of relational structures.

Definition

Relational structure U is *(embedding-)universal* for class C iff $U \in C$ and every structure $A \in C$ is induced substructure of U.
Class: graphs
Example

- **Class:** graphs
- **Universal graph:**
 - **Fraïssé:** homogeneous universal graph constructed by Fraïssé limit.
 - **Erdős and Rényi, 1963:** The countable random graph.
 - **Rado, 1965:** Explicit description:
 - **Vertices:** all finite 0–1 sequences \((a_1, a_2, \ldots, a_t), t \in \mathbb{N}\)
 - **Edges:** \(\{(a_1, a_2, \ldots, a_t), (b_1, b_2, \ldots, b_s)\}\) form edge if
 \[b_a = 1 \text{ where } a = \sum_{i=1}^{t} a_i 2^i.\]
Example

- **Class**: graphs
- **Universal graph**:
 - **Fraïssé**: homogeneous universal graph constructed by Fraïssé limit.
 - **Erdős and Rényi, 1963**: The countable random graph.
 - **Rado, 1965**: Explicit description:
 - **Vertices**: all finite 0–1 sequences \((a_1, a_2, \ldots, a_t), t \in \mathbb{N}\)
 - **Edges**: \(\{(a_1, a_2, \ldots, a_t), (b_1, b_2, \ldots, b_s)\}\) form edge
 \(\iff b_a = 1\) where \(a = \sum_{i=1}^{t} a_i2^i\).
 - Many variants of Rado’s description are known.
 - All the description give up to isomorphism unique graph, as can be shown using the extension property.
Class: linear orders

Universal structure: \mathbb{Q}.
Universal partial order

- **Class**: partial orders
- Homogeneous universal partial order exists by Fraïssé.

Sketch of explicit description (H., Nešetřil, 2003):

Notation:

Pairs $M = (M_L, M_R)$.

- M_L, M_R are sets.

Vertices:

Pair M is a vertex iff:

1. (left completeness) $A_L \subseteq M_L$ for each $A \in M_L$,
2. (right completeness) $B_R \subseteq M_R$ for each $B \in M_R$,
3. (correctness) 1. Elements M_L and M_R are vertices, 2. $M_L \cap M_R = \emptyset$,
4. (ordering property) $(\{A\} \cup A_R) \cap (\{B\} \cup B_L) \neq \emptyset$ for each $A \in M_L$, $B \in M_R$.

Relation:

We put $M < N$ if $(\{M\} \cup M_R) \cap (\{N\} \cup N_L) \neq \emptyset$.

Correspondence to Conway's surreal numbers. Later generalized to rational metric space (in H., Nešetřil, 2008; in constructive setting Lešnik, 2008).
Universal partial order

- **Class**: partial orders

Homogeneous universal partial order exists by Fraïssé.

Sketch of explicit description (H., Nešetřil, 2003):

Notation: Pairs $M = (M_L|M_R)$. M_L, M_R are sets.

Vertices: Pair M is a vertex iff:

1. *(left completeness)* $A_L \subseteq M_L$ for each $A \in M_L$,
2. *(right completeness)* $B_R \subseteq M_R$ for each $B \in M_R$,
3. *(correctness)*
 1. Elements M_L and M_R are vertices,
 2. $M_L \cap M_R = \emptyset$,
4. *(ordering property)* $(\{A\} \cup A_R) \cap (\{B\} \cup B_L) \neq \emptyset$ for each $A \in M_L, B \in M_R$,

Relation: We put $M < N$ if $(\{M\} \cup M_R) \cap (\{N\} \cup N_L) \neq \emptyset$.

Correspondence to Conway's surreal numbers. Later generalized to rational metric space (in H., Nešetřil, 2008; in constructive setting Lešnik, 2008).
Universal partial order

- **Class:** partial orders
- Homogeneous universal partial order exists by Fraïssé.
- **Sketch of explicit description** (H., Nešetřil, 2003):
 - **Notation:** Pairs $M = (M_L|M_R)$. M_L, M_R are sets.
 - **Vertices:** Pair M is a vertex iff:
 1. (left completeness) $A_L \subseteq M_L$ for each $A \in M_L$,
 2. (right completeness) $B_R \subseteq M_R$ for each $B \in M_R$,
 3. (correctness)
 1. Elements M_L and M_R are vertices,
 2. $M_L \cap M_R = \emptyset$,
 4. (ordering property) $(\{A\} \cup A_R) \cap (\{B\} \cup B_L) \neq \emptyset$ for each $A \in M_L, B \in M_R$,
 - **Relation:** We put $M < N$ if $(\{M\} \cup M_R) \cap (\{N\} \cup N_L) \neq \emptyset$.
 - Correspondence to Conway’s surreal numbers.
 - Later generalized to rational metric space (in H., Nešetřil, 2008; in constructive setting Lešnik, 2008).
Cameron’s question

Peter Cameron (2006): Is there a better explicit construction of the homogeneous universal partial order?
Peter Cameron (2006): Is there a better explicit construction of the homogeneous universal partial order?

Answer: I don’t know of any.
Peter Cameron (2006): Is there a better explicit construction of the homogeneous universal partial order?

Answer: I don’t know of any.

However there are positive examples of universal partial order.
Definition

\(\{0, 1\}^*\) denote all words over alphabet \(\{0, 1\}\).

\(W \leq_w W'\) iff \(W'\) is an initial segment (left factor) of \(W\).
Definition

\{0, 1\}^* denote all words over alphabet \{0, 1\}.

\(W \leq_w W' \) iff \(W' \) is an initial segment (left factor) of \(W \).

Partial order \((\mathcal{W}, \leq_w)\):

Vertices: finite subsets \(A \) of \(\{0, 1\}^* \) such that no distinct words \(W, W' \) in \(A \) satisfy \(W \leq_w W' \).

Relation: \(A, B \in \mathcal{W} \) we put \(A \leq \mathcal{W} B \) when for each \(W \in A \) there exists \(W' \in B \) such that \(W \leq_w W' \).
Definition

\{0, 1\}^* denote all words over alphabet \{0, 1\}.

\(W \leq_w W'\) iff \(W'\) is an initial segment (left factor) of \(W\).

Partial order \((\mathcal{W}, \leq_{\mathcal{W}})\):

Vertices: finite subsets \(A\) of \(\{0, 1\}^*\) such that no distinct words \(W, W'\) in \(A\) satisfy \(W \leq_w W'\).

Relation: \(A, B \in \mathcal{W}\) we put \(A \leq_{\mathcal{W}} B\) when for each \(W \in A\) there exists \(W' \in B\) such that \(W \leq_w W'\).

Is it homogeneous?
Word order

Definition

\{0, 1\}^* denote all words over alphabet \{0, 1\}.

\(W \leq_w W'\) iff \(W'\) is an initial segment (left factor) of \(W\).

Partial order \((\mathcal{W}, \leq_w)\):

Vertices: finite subsets \(A\) of \(\{0, 1\}^*\) such that no distinct words \(W, W'\) in \(A\) satisfy \(W \leq_w W'\).

Relation: \(A, B \in \mathcal{W}\) we put \(A \leq_w B\) when for each \(W \in A\) there exists \(W' \in B\) such that \(W \leq_w W'\).

- **Is it homogeneous?**
 - no: \(A = \{0\}, B = \{00, 01\}\) form a gap.
Lemma (H., J. Nešetřil, 2011)

$(\mathcal{W}, \leq_{\mathcal{W}})$ is an universal partial order

- We give an algorithm for on-line embedding of any partial order into $(\mathcal{W}, \leq_{\mathcal{W}})$.
Lemma (H., J. Nešetřil, 2011)

\((\mathcal{W}, \leq_{\mathcal{W}})\) is an universal partial order

- We give an algorithm for on-line embedding of any partial order into \((\mathcal{W}, \leq_{\mathcal{W}})\).
- Alice-Bob game:
 - Bob choose arbitrary partial order on vertices \(\{1, 2, \ldots N\}\).
 - At turn \(n\) Bob reveals the relations of vertex \(n\) to vertices \(1, 2, \ldots n - 1\).
 - Alice must provide representation of the vertex in \((\mathcal{W}, \leq_{\mathcal{W}})\).
Lemma (H., J. Nešetřil, 2011)

\((\mathcal{W}, \leq_{\mathcal{W}})\) is an universal partial order

- We give an algorithm for on-line embedding of any partial order into \((\mathcal{W}, \leq_{\mathcal{W}})\).
- Alice-Bob game:
 - Bob choose arbitrary partial order on vertices \(\{1, 2, \ldots N\}\).
 - At turn \(n\) Bob reveals the relations of vertex \(n\) to vertices \(1, 2, \ldots n-1\).
 - Alice must provide representation of the vertex in \((\mathcal{W}, \leq_{\mathcal{W}})\).
- Sample game:
Lemma (H., J. Nešetřil, 2011)

$(\mathcal{W}, \leq_{\mathcal{W}})$ is an universal partial order

- We give an algorithm for on-line embedding of any partial order into $(\mathcal{W}, \leq_{\mathcal{W}})$.
- **Alice-Bob game:**
 - Bob chooses an arbitrary partial order on vertices $\{1, 2, \ldots, N\}$.
 - At turn n, Bob reveals the relations of vertex n to vertices $1, 2, \ldots, n-1$.
 - Alice must provide a representation of the vertex in $(\mathcal{W}, \leq_{\mathcal{W}})$.
- **Sample game:**
 - **Alice:** Representation of 1 is $\{0\}$.
Lemma (H., J. Nešetřil, 2011)

$(\mathcal{W}, \leq_{\mathcal{W}})$ is an universal partial order

- We give an algorithm for on-line embedding of any partial order into $(\mathcal{W}, \leq_{\mathcal{W}})$.
- Alice-Bob game:
 - Bob choose arbitrary partial order on vertices $\{1, 2, \ldots N\}$.
 - At turn n Bob reveals the relations of vertex n to vertices $1, 2, \ldots n-1$.
 - Alice must provide representation of the vertex in $(\mathcal{W}, \leq_{\mathcal{W}})$.
- Sample game:
 - Alice: Representation of 1 is $\{0\}$.
 - Alice: Representation of 2 is $\{0, 10\}$.
Lemma (H., J. Nešetřil, 2011)

\((\mathcal{W}, \leq_{\mathcal{W}})\) is an universal partial order

- We give an algorithm for on-line embedding of any partial order into \((\mathcal{W}, \leq_{\mathcal{W}})\).
- Alice-Bob game:
 - Bob chooses an arbitrary partial order on vertices \(\{1, 2, \ldots N\}\).
 - At turn \(n\) Bob reveals the relations of vertex \(n\) to vertices \(1, 2, \ldots n-1\).
 - Alice must provide a representation of the vertex in \((\mathcal{W}, \leq_{\mathcal{W}})\).
- Sample game:
 - **Alice:** Representation of 1 is \(\{0\}\).
 - **Alice:** Representation of 2 is \(\{0, 10\}\).
 - **Alice:** Representation of 3 is \(\{000, 100\}\).
Lemma (H., J. Nešetřil, 2011)

$(\mathcal{W}, \leq_{\mathcal{W}})$ is an universal partial order

- We give an algorithm for on-line embedding of any partial order into $(\mathcal{W}, \leq_{\mathcal{W}})$.
- Alice-Bob game:
 - Bob chooses an arbitrary partial order on vertices $\{1, 2, \ldots, N\}$.
 - At turn n Bob reveals the relations of vertex n to vertices $1, 2, \ldots, n-1$.
 - Alice must provide a representation of the vertex in $(\mathcal{W}, \leq_{\mathcal{W}})$.
- Sample game:
 - Alice: Representation of 1 is $\{0\}$.
 - Alice: Representation of 2 is $\{0, 10\}$.
 - Alice: Representation of 3 is $\{000, 100\}$.
 - Alice: Representation of 4 is $\{0000\}$.
Lemma (H., J. Nešetřil, 2011)

\((\mathcal{W}, \leq_{\mathcal{W}})\) is an universal partial order

- We give an algorithm for on-line embedding of any partial order into \((\mathcal{W}, \leq_{\mathcal{W}})\).
- Alice-Bob game:
 - Bob choose arbitrary partial order on vertices \(\{1, 2, \ldots N\}\).
 - At turn \(n\) Bob reveals the relations of vertex \(n\) to vertices \(1, 2, \ldots n - 1\).
 - Alice must provide representation of the vertex in \((\mathcal{W}, \leq_{\mathcal{W}})\).
- Sample game:
 - **Alice**: Representation of 1 is \(\{0\}\).
 - **Alice**: Representation of 2 is \(\{0, 10\}\).
 - **Alice**: Representation of 3 is \(\{000, 100\}\).
 - **Alice**: Representation of 4 is \(\{0000\}\).
- We prove by induction that there is winning strategy for Alice. Basic idea is “Venn diagram” property.
Theorem (H., Nešetřil, 2004)

The quasi order formed by finite oriented paths ordered by homomorphisms contains universal partial order.

Proof (sketch)

Embed $(W, \leq W)$ into homomorphism order. Assign every word W a path $P(W)$ such that $W \leq W'$ iff $P(W) \rightarrow P(W')$. Paths consist of head H, bodies B_0, B_1, and the tail T. For every set of words $A \in W$, $P'(A)$ is the disjoint union of paths $P(W), W \in A$.

Observation: $P'(A) \leq P'(B)$ iff $A \leq W B$.

Little problem: How to glue disjoint paths into single path?

New proof (H., Nešetřil, 2011) by embedding periodic sets of natural numbers.
Universality by embedding

Theorem (H., Nešetřil, 2004)

The quasi order formed by finite oriented paths ordered by homomorphisms contains universal partial order.

Proof (sketch)

- Embed \((\mathcal{W}, \leq_{\mathcal{W}})\) into homomorphism order.
Universality by embedding

Theorem (H., Nešetřil, 2004)

The quasi order formed by finite oriented paths ordered by homomorphisms contains universal partial order.

Proof (sketch)

- Embed \((\mathcal{W}, \leq_{\mathcal{W}})\) into homomorphism order.
- Assign every word \(W\) a path \(P(W)\) such that \(W \leq_{\mathcal{W}} W'\) iff \(P(W) \rightarrow P(W')\).

Observation: \(P'(A) \leq P'(B)\) iff \(A \leq W B\).

Little problem: How to glue disjoint paths into single path?

New proof (H., Nešetřil, 2011) by embedding periodic sets of natural numbers.
Universality by embedding

Theorem (H., Nešetřil, 2004)

The quasi order formed by finite oriented paths ordered by homomorphisms contains universal partial order.

Proof (sketch)

- Embed \((\mathcal{W}, \leq_{\mathcal{W}})\) into homomorphism order.
- Assign every word \(W\) a path \(P(W)\) such that \(W \leq_{\mathcal{W}} W'\) iff \(P(W) \rightarrow P(W')\).
- Path consist of head \(H\), bodies \(B_0, B_1\) and the tail \(T\).
The quasi order formed by finite oriented paths ordered by homomorphisms contains universal partial order.

Proof (sketch)
- Embed $(\mathcal{W}, \leq_{\mathcal{W}})$ into homomorphism order.
- Assign every word W a path $P(W)$ such that $W \leq_{\mathcal{W}} W'$ iff $P(W) \rightarrow P(W')$.
- Path consist of head H, bodies B_0, B_1 and the tail T.
- For every set of words $A \in \mathcal{W}$, $P'(A)$ is disjoint union of paths $P(W), W \in A$.
Universality by embedding

Theorem (H., Nešetřil, 2004)

The quasi order formed by finite oriented paths ordered by homomorphisms contains universal partial order.

Proof (sketch)

- Embed \((\mathcal{W}, \leq_{\mathcal{W}}) \) into homomorphism order.
- Assign every word \(W \) a path \(P(W) \) such that \(W \leq_{\mathcal{W}} W' \) iff \(P(W) \rightarrow P(W') \).
- Path consist of head \(H \), bodies \(B_0, B_1 \) and the tail \(T \).
- For every set of words \(A \in \mathcal{W} \), \(P'(A) \) is disjoint union of paths \(P(W), W \in A \).
- Observation: \(P'(A) \leq P'(B) \) iff \(A \leq_{\mathcal{W}} B \).
Universality by embedding

Theorem (H., Nešetřil, 2004)

The quasi order formed by finite oriented paths ordered by homomorphisms contains universal partial order.

Proof (sketch)

1. Embed \((\mathcal{W}, \leq)\) into homomorphism order.
2. Assign every word \(W\) a path \(P(W)\) such that \(W \leq W'\) iff \(P(W) \rightarrow P(W')\).
3. Path consist of head \(H\), bodies \(B_0, B_1\) and the tail \(T\).
4. For every set of words \(A \in \mathcal{W}\), \(P'(A)\) is disjoint union of paths \(P(W), W \in A\).
5. Observation: \(P'(A) \leq P'(B)\) iff \(A \leq \mathcal{W} B\).

Little problem: How to glue disjoint paths into single path?

Jan Hubička

Explicit construction of universal structures
Theorem (H., Nešetřil, 2004)

The quasi order formed by finite oriented paths ordered by homomorphisms contains universal partial order.

Proof (sketch)

- Embed $\langle \mathcal{W}, \leq_\mathcal{W} \rangle$ into homomorphism order.
- Assign every word W a path $P(W)$ such that $W \leq_\mathcal{W} W'$ iff $P(W) \rightarrow P(W')$.
- Path consist of head H, bodies B_0, B_1 and the tail T.
- For every set of words $A \in \mathcal{W}$, $P'(A)$ is disjoint union of paths $P(W), W \in A$.
- Observation: $P'(A) \leq P'(B)$ iff $A \leq_\mathcal{W} B$.

Catalogue of universal partial orders

Order implied by clones on boolean functions, 7.3

Homomorphism orders of special classes of structures, 7.2

Convex sets \((C, \leq_C), 6.4\)

Homomorphism order of oriented paths \((P, \leq_P), 7.1\)

Piecewise linear functions \((F, \leq_F), 6.4\)

Truncated vectors \((TV, \leq_{TV}), 6.6\)

Order implied by grammars \((G, \leq_G), 6.5\).

Sets of intervals \((I, \leq_I), 6.3\)

Periodic sets \((S, \subseteq), 6.7\)

Binary tree dominance \((B, \leq_B), 6.2\)

Words \((W, \leq_W), 6.1\)
Universal but not homogeneous

- **Hajnal, Pach, 1981:**
 - Nonexistence of universal 4-cycle-free graph.

- **Komjáth, Mekler, Pach, 1988:**
 - Existence of universal graph \mathcal{P}_l-free graph (\mathcal{P}_l is graph of length l).
 - Existence of universal graph for classes without short odd cycles (fixed proof appears in 1999).

- **Covington, 1989:**
 - Existence of universal graph for class of graphs without induced path on 4 vertices.
 - Notion of amalgamation failure.

- **Komjáth, 1999:**
 - Existence of universal bowtie-free graph.

- **Cherlin, Shelah, Shi, 1999:**
 - Characterization of universal ω-categorical \mathcal{F}-free graphs via algebraic closure.
 - Existence of universal graph for classes defined by forbidden homomorphisms.
 - New examples

Explicit construction of universal structures
Universal graph without odd cycles of length at most 2l + 1

M-Structure is structure $\mathbf{M} = (V, G, F_1, \ldots, F_{2l+1})$ such that:

1. G is graph on V without loops;
2. $F_1, \ldots F_{2l+1}$ graph on V with loops;
3. $F_1 = G$;
4. $xy \in F_a, yz \in F_b, a + b \leq 2s + 1$, then $xz \in F_{a+b}$;
5. if $a + b \leq 2s + 1$ odd, then $F_a \cup G_b = \emptyset$.

Universal graph:

- Retract of Fraïssé limit of M structures.
Universal graph without odd cycles of length at most $2l + 1$

M-Structure is structure $\mathbf{M} = (V, G, F_1, \ldots, F_{2l+1})$ such that:

1. G is graph on V without loops;
2. F_1, \ldots, F_{2l+1} graph on V with loops;
3. $F_1 = G$;
4. $xy \in F_a, yz \in F_b, a + b \leq 2s + 1$, then $xz \in F_{a+b}$;
5. if $a + b \leq 2s + 1$ odd, then $F_a \cup G_b = \emptyset$.

Universal graph:

- Retract of Fraïssé limit of M structures.
- Retract of generic even-odd metric space with forbidden loop of length $\leq 2l + 1$.

Jan Hubička
Explicit construction of universal structures
Universal graph without odd cycles of length at most $2l + 1$

M-Structure is structure $M = (V, G, F_1, \ldots, F_{2l+1})$ such that:

1. G is graph on V without loops;
2. $F_1, \ldots F_{2l+1}$ graph on V with loops;
3. $F_1 = G$;
4. $xy \in F_a, yz \in F_b, a + b \leq 2s + 1$, then $xz \in F_{a+b}$;
5. If $a + b \leq 2s + 1$ odd, then $F_a \cup G_b = \emptyset$.

Universal graph:

- Retract of Fraïssé limit of M structures.
- Retract of generic even-odd metric space with forbidden loop of length $\leq 2l + 1$.
- Metric graph
Covington’s construction of a universal structure for class C:

1. Identification of finite set of amalgamation failures
2. Extending language by new relations (homogenization), class C'
3. Universal structure is then reduct of the Fraïssé limit of C'
Universal graph with forbidden induced path on 4 vertices

Covington’s construction of a universal structure for class \mathcal{C}:

1. Identification of finite set of amalgamation failures
2. Extending language by new relations (homogenization), class \mathcal{C}'
3. Universal structure is then reduct of the Fraïssé limit of \mathcal{C}'

Amalgamation failures:
Universal graph with forbidden induced path on 4 vertices

Covington’s construction of a universal structure for class \mathcal{C}:

1. Identification of finite set of amalgamation failures
2. Extending language by new relations (homogenization), class \mathcal{C}'
3. Universal structure is then reduct of the Fraïssé limit of \mathcal{C}'

Amalgamation failures:

Language of graphs needs to be extended by single ternary relation.
A family of connected finite relational structures. Class $\text{Forb}_h(\mathcal{F})$ consists of all relational structures A such that there is no homomorphism $F \rightarrow A$, $F \in \mathcal{F}$.

Corollary (Cherlin, Shelah, Shi 1999)

There is universal graph for class $\text{Forb}_h(\mathcal{F})$.

Proof by finiteness of the algebraic closure.
A family of connected finite relational structures. Class $\text{Forb}_h(\mathcal{F})$ consists of all relational structures A such that there is no homomorphism $F \to A, F \in \mathcal{F}$.

Corollary (Cherlin, Shelah, Shi 1999)

There is universal graph for class $\text{Forb}_h(\mathcal{F})$.

Proof by finiteness of the algebraic closure.

Cherlin, Shelah, Shi give an condition on existence of universal ω categorical structure for \mathcal{F}-free graphs.
Explicit amalgamation argument for existence of universal graph for $Forb_h(F)$

Definition

For relational structure A and inclusion minimal vertex cut C in its Gaifman graph of A, a *piece of relational structure* A is pair $P = (P, C)$. Here P is structure induced on A by union of C and vertices of some connected component of $A \setminus C$.

Tuple C consist of the vertices of cut C in (arbitrary) linear order.

Vertices C are *roots of piece* P.
Examples

- The pieces of Petersen graph
The pieces of Petersen graph

Pieces of cycles of length $n = \text{paths of length } 2, \ldots, n - 2$ rooted at both ends.
Examples

- Pieces of a relational tree $T = \text{branches of } T$.

\begin{center}
\begin{tikzpicture}
 \node at (0,0) (A) {A};
 \node at (-1.732,1) (B) {B};
 \node at (1.732,1) (C) {C};
 \draw (A) -- (B);
 \draw (A) -- (C);
 \draw (B) -- (C);
 \node at (3,0) (A1) {A};
 \node at (4.732,1) (B1) {B};
 \node at (2.268,1) (C1) {C};
 \draw (A1) -- (B1);
 \draw (A1) -- (C1);
 \draw (B1) -- (C1);
\end{tikzpicture}
\end{center}
Proof (sketch)

- Enumerate all pieces of all forbidden structures \(F \in \mathcal{F} \) as \(P_1 = (P_1, \vec{C}_1), \ldots, P_N = (P_N, \vec{C}_N) \).
Proof (sketch)

- Enumerate all pieces of all forbidden structures $F \in \mathcal{F}$ as $P_1 = (P_1, \vec{C}_1), \ldots, P_N = (P_N, \vec{C}_N)$.

- **Expansion R' of structure $R \in Forb_h(\mathcal{F})$:**
 For every piece $P_i, i = 1, 2, \ldots, N$ add new relation X_i of arity \vec{C}_i.

Existence of homomorphism f: $P_i \rightarrow R$ imply $f(\vec{C}_i) \in X_i$.

Let P_{i1}, \ldots, P_{in} be all pieces generated by cut $\vec{C}' \in X_{i1}, \ldots, C' \in X_{in}$.

There is no tuple \vec{T} of vertices of R such that $\vec{T} \in X_{i1}, \ldots, C' \in X_{in}$.

Substructures of expansions of all $R \in Forb_h(\mathcal{F})$ form an amalgamation class.

Reduct of the Fraïssé limit of this class is an universal graph for $Forb_h(\mathcal{F})$.

Jan Hubička
Explicit construction of universal structures
Proof (sketch)

- Enumerate all pieces of all forbidden structures $F \in \mathcal{F}$ as $\mathcal{P}_1 = (P_1, \vec{C}_1), \ldots, \mathcal{P}_N = (P_N, \vec{C}_N)$.

- Expansion R' of structure $R \in \text{Forb}_h(\mathcal{F})$:
 For every piece $\mathcal{P}_i, i = 1, 2, \ldots, N$ add new relation X_i of arity \vec{C}_i.

 - Existence of homomorphism $f : P_i \rightarrow R$ imply $f(\vec{C}_i) \in X_i$.
 - Let $\mathcal{P}_{i_1}, \ldots \mathcal{P}_{i_n}$ be all pieces generated by cut \vec{C}.
 There is no tuple \vec{T} of vertices of R such that $\vec{T} \in X_{i_1}, \ldots C' \in X_{i_n}$.
Enumerate all pieces of all forbidden structures $F \in \mathcal{F}$ as $\mathcal{P}_1 = (P_1, \vec{C}_1), \ldots, \mathcal{P}_N = (P_N, \vec{C}_N)$.

Expansion R' of structure $R \in \text{Forb}_h(\mathcal{F})$:
For every piece $\mathcal{P}_i, i = 1, 2, \ldots, N$ add new relation X_i of arity \vec{C}_i.

- Existence of homomorphism $f : P_i \to R$ imply $f(\vec{C}_i) \in X_i$.
- Let $\mathcal{P}_{i_1}, \ldots \mathcal{P}_{i_n}$ be all pieces generated by cut \vec{C}.
 There is no tuple \vec{T} of vertices of R such that $\vec{T} \in X_{i_1}, \ldots C' \in X_{i_n}$.

Substructures of expansions of all $R \in \text{Forb}_h(\mathcal{F})$ form an amalgamation class.
Reduct of the Fraïssé limit of this class is an universal graph for $\text{Forb}_h(\mathcal{F})$.

Jan Hubička
Explicit construction of universal structures
The arity of new relation depend on the size of inclusion minimal vertex cuts of Gaifman graph.
Study of specific examples

The arity of new relation depend on the size of inclusion minimal vertex cuts of Gaifman graph.

The construction is optimal: expansions with smaller arities will not give amalgamation class.
Study of specific examples

The arity of new relation depend on the size of inclusion minimal vertex cuts of Gaifman graph.
The construction is optimal: expansions with smaller arities will not give amalgamation class.

- Arity 1 (monadic expansion)
 - Expansion equivalent to a vertex coloring
 - (Relational) trees:
Study of specific examples

The arity of new relation depend on the size of inclusion minimal vertex cuts of Gaifman graph.

The construction is optimal: expansions with smaller arities will not give amalgamation class.

- **Arity 1 (monadic expansion)**
 - Expansion equivalent to a vertex coloring
 - *(Relational)* trees:
 - Expansion is axiomatized by forbidden edges.
 - Universal graph retracted by unifying vertices of the same color is homomorphism-universal graph.
 - Can be seen as a new construction of homomorphism duals.
Study of specific examples

The arity of new relation depend on the size of inclusion minimal vertex cuts of Gaifman graph.

The construction is optimal: expansions with smaller arities will not give amalgamation class.

- **Arity 1 (monadic expansion)**
 - Expansion equivalent to a vertex coloring
 - (Relational) trees:
 - Expansion is axiomatized by forbidden edges.
 - Universal graph retracted by unifying vertices of the same color is homomorphism-universal graph.
 - Can be seen as a new construction of homomorphism duals.
 - Universal graph is “blown up” finite graph: explicit description is easy.
Study of specific examples

The arity of new relation depend on the size of inclusion minimal vertex cuts of Gaifman graph.

The construction is optimal: expansions with smaller arities will not give amalgamation class.

- **Arity 1 (monadic expansion)**
 - Expansion equivalent to a vertex coloring
 - (Relational) trees:
 - Expansion is axiomatized by forbidden edges.
 - Universal graph retracted by unifying vertices of the same color is homomorphism-universal graph.
 - Can be seen as a new construction of homomorphism duals.
 - Universal graph is “blown up” finite graph: explicit description is easy.

- **Relations F** such that their Gaifman graph is simple:
 - Forbidden irreducible structures.
 - No finite homomorphism universal object
 - Blown up finite graph, with forbidden cliques.
Study of specific examples

- Arity 2: forbidden cycles, etc.
 - Representation translate to a metric space
 - Explicit construction of metric space can be directly used to represent these.

- Beyond arity 2 explicit representation still possible, but impractical to describe in full generality.
Thank you...

...Questions?