Assignment 1 (deadline: March 28)

The total number of points possible to obtain in this assignment: 68

Exercise 1. Show that the limit permuton of every convergent sequence of permutations is unique. [8 points]

Exercise 2. Prove the Graph Removal Lemma for complete graphs K_k . [5 points]

Exercise 3. Prove the Graph Removal Lemma for all graphs. [3 points] in addition the points for Exercise 2

Exercise 4. Show that the Turán density of any graph H is equal to $\frac{\chi(H)-2}{\chi(H)-1}$. [8 points]

Exercise 5. Show that for every permuton μ the sequence of μ -random permutations with increasing sizes converges to μ with probability one. [8 points]

Exercise 6. Prove the following. For every $\varepsilon > 0$ and $k_0 \in \mathbb{N}$, there exists $K_0 \in \mathbb{N}$ such that for every graph G and every equipartition of V(G) into at most k_0 parts, there exists an equipartition $V_1 \cup \cdots \cup V_k$ of V(G) that refines the given equipartition of V(G), has at most K_0 parts, i.e. $k \leq K_0$, and all pairs of parts V_i and V_j , $1 \leq i < j \leq k$, except for at most εk^2 pairs are ε -regular, i.e. they satisfy that

$$\left|\frac{e(A,B)}{|A||B|} - \frac{e(V_i,V_j)}{|V_i||V_J|}\right| \le \varepsilon$$

holds for all subsets $A \subseteq V_i$ and $B \subseteq V_j$ with $|A| \ge \varepsilon |V_i|$ and $|B| \ge \varepsilon |V_j|$. [6 points]

Exercise 7. Prove the following. For every $\delta > 0$ and every graph H, there exists $\varepsilon > 0$ such that every ε -regular decomposition $V_1 \dot{\cup} \cdots \dot{\cup} V_k$ of any graph G satisfies that

$$\left| t(H,G) - \frac{1}{k^{|V(H)|}} \sum_{f:V(H) \to [k]} \prod_{vw \in E(H)} d_{f(v)f(w)} \right| \le \delta$$

where $d_{ij} = \frac{e(V_i, V_j)}{|V_i| |V_j|}$ if $i \neq j$, and $d_{ii} = \frac{2 |E(G[V_i])|}{|V_i|^2}$ if i = j. [8 points]

Exercise 8. Show that if W is a graphon with $d(K_2, W) = 1/2$ and $d(K_3, W) = 0$, then there exists a partition of [0, 1] to two disjoint measurable sets A and B such that W(x, y) = 0 for almost every $(x, y) \in A^2 \cup B^2$ and W(x, y) = 1 for almost every $(x, y) \in [0, 1]^2 \setminus (A^2 \cup B^2)$. [6 points]

Exercise 9. Show that any 2-edge-coloring of K_n contains at least $\frac{1}{4} \binom{n}{3} + o(n^3)$ monochromatic triangles. [8 points]

Exercise 10. Show that a sequence $(G_n)_{n \in \mathbb{N}}$ of tournaments is quasirandom if and only if $\lim_{n\to\infty} d(T_4, G_n) = \frac{4!}{2^6} = \frac{3}{8}$ where T_4 is the 4-vertex transitive tournament. [8 points]