
Lecture 14 (summary)

In this lecture, we show how to set up an SDP program to search for a flag algebra
proof. We will demonstrate the approach on the following specific example: show that

+ ≥ α for α as large as possible. We first fix a number of vertices n ∈ N, which is the
size of graphs that we work with. In our example, n = 3 (the choice of n corresponds to the
computational power that we may use). List all graphsG1, . . . , GK with that n vertices. We
can combine the following three types of expression to get the desired inequality: Gi ≥ 0,
G1+ . . .+GK = 1, and
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where A is a positive semidefinite matrix and v is a vector

with entries from AR for some root graph R, e.g, R = or R = . As G1 + . . .+GK = 1
can be viewed as G1 + . . .+GK ≥ 1 and −G1 − . . .−GK ≥ −1, we are then searching for
non-negative coefficients for the inequalities and suitable positive semidefinite matrices.

Recall that a semidefinite program is an optimization problem that asks to maximize
⟨C|X⟩ subject to ⟨A1|X⟩ = b1, . . . , ⟨Ak|X⟩ = bk over all positive semidefinite matrices X,
where ⟨M |N⟩ for two matrices M,N ∈ Rn,n is the sum M11N11 +M12N12 + . . .+MnnNnn.
Note that if X is positive semidefinite matrix, then every diagonal entry of X is non-
negative and more generally every principal submatrix is positive semidefinite. So, we
dedicate some of the diagonal entries of X to be the sought coefficients for the inequalities
and some of the principal submatrices to be the sought positive semidefinite matrices. The
constraints ⟨A1|X⟩ = b1, . . . , ⟨Ak|X⟩ = bk will then enforce the left hand side to as desired.
Hence, we set k = K and the i-th constraint will force the coefficient at Gi.

In our example, we have the following inequalities to combine:
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where A is positive semidefinite. Let γ+, γ−, γ1, . . . , γ4 be the sought coefficients for the
first inequality, we will think of the matrix X as

X =



γ+

γ−

γ1
γ2

γ3
γ4

A11 A12

A21 A22


.



Hence, the matrices A1, . . . , A4, the reals b1, . . . , b4 and the matrix C will set as follows.

A1 =



1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0


and b1 = 1

A2 =



1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1/3 1/3
0 0 0 0 0 0 1/3 0


and b2 = 0

A3 =



1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1/3
0 0 0 0 0 0 1/3 1/3


and b3 = 0

A4 =



1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1


and b4 = 1

C =



1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0





Running the program, we obtain that an optimal solution is the following matrix X:

X =



1/4 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 3/4 −3/4
0 0 0 0 0 0 −3/4 3/4


, which yields that the sum of the following two inequalities
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gives the desired inequality, + ≥ 1/4.


