Topics in Advanced Combinatorics Lecture 2 (summary)

A graph is planar if it can be embedded in the plane. A plane graph is a graph with a fixed embedding in the plane. Edge-maximal plane graphs are triangulations as asserted by the next lemma.

Lemma. Every plane graph with at least three vertices is a spanning subgraph of a plane triangulation.

Euler's Formula asserts that every connected plane graph G satisfies that n+f=m+2 where n is the number of vertices of G, f is the number of faces and m is the number of edges. Euler's Formula yields the following upper bound on the number of edges of a plane graph.

Lemma. Every n-vertex planar graph, $n \geq 3$, has at most 3n - 6 edges.

We now consider embedding of graphs to surfaces of higher genera, which are obtained from the plane by adding g handles; in this way, we obtain a surface of Euler genus g. Euler's Formula can be extended to surfaces of higher genera as follows: if G is a 2-cell embedding of an n-vertex graph with m edges in a surface of Euler genus g that has f faces, then $n+f \leq m+2-2g$. It follows that an n-vertex graph G, $n \geq 3$, that can be embedded in a surface of Euler genus g has at most 3n+6g-6 edges.

Theorem (Heawood's Formula). Let G be a graph that can be embedded in a surface of Euler genus g. It holds that

$$\chi(G) \le \left\lfloor \frac{7 + \sqrt{1 + 48g}}{2} \right\rfloor.$$

The bound given by Heawood's Formula is tight for every surface as the complete graph with the corresponding number of vertices can be embedded in the surface.

Exercises

- 1. Show that the list chromatic number of any even cycle is equal to two.
- 2. Show that the list chromatic number of $\Theta_{2,2,2m}$ is equal to two for every $m \in \mathbb{N}$.
- 3. Show that the list chromatic number of $\Theta_{4,4,4}$ is equal to three.
- 4. Show that the list chromatic number of a graph obtained from two copies of C_4 by joining them by an edge is equal to three.

The graph $\Theta_{a,b,c}$ is obtained by identifying the end-vertices of an a-edge path, a b-edge path and a c-edge path, i.e., the graph has a + b + c - 1 vertices and a + b + c edges.