Topics in Advanced Combinatorics Lectures 3 and 4 (summary)

The aim of the two lectures is to show the following theorem.

Theorem. The list chromatic number of every planar bipartite graph is at most three.

The theorem follows from the following statement. We say that a graph G is L-colorable for a list assignment $L:V(G)\to 2^{\mathbb{N}}$ there exists $c:V(G)\to \mathbb{N}$ such that $c(v)\in L(v)$ for every $v\in V(G)$ and $c(u)\neq c(v)$ for every $uv\in E(G)$.

Theorem (Alon-Tarsi Theorem). Let G be a graph that has an orientation \vec{G} such that the number of Eulerian subgraphs with an even number of edges and with an odd number of edges differ. The graph G is L-colorable for every list assignment L such that |L(v)| is equal to the in-degree of v increased by one.

To obtain the upper bound on the list chromatic number of planar bipartite graphs, we need the following theorem and lemmas.

Theorem (Hall's Theorem). Let A_1, \ldots, A_k be sets such that

$$\left| \bigcup_{j \in J} A_j \right| \ge |J|$$

for every $J \subseteq \{1, ..., k\}$. Then, there exist distinct $a_1, ..., a_k$ such that $a_i \in A_i$ for every $i \in \{1, ..., k\}$.

Lemma. Every triangle-free n-vertex planar graph, $n \geq 3$, has at most 2n-4 edges.

Lemma. Every triangle-free planar graph has an orientation with the maximum in-degree at most two.

To prove Alon-Tarsi Theorem, we need the following statement.

Theorem (Combinatorial Nullstellensatz). Consider an arbitrary field \mathbb{F} . Let $f(x_1, \ldots, x_n)$ be a polynomial such that the degree of x_i in f is t_i , $i \in \{1, \ldots, n\}$, and the coefficient of $x_1^{t_1} \cdots x_n^{t_n}$ is non-zero. If S_1, \ldots, S_n are subsets of \mathbb{F} such that $|S_i| \geq t_i + 1$ for every $i \in \{1, \ldots, n\}$, then there exist $s_1 \in S_1, \ldots, s_n \in S_n$ such that $f(s_1, \ldots, s_n) \neq 0$.

Seminar material (for possible student presentations)

The following result was proven by Fleischner and Stiebitz [Discrete Mathematics 101 (1992), 39–48].

Theorem. Let G be a 4-regular 3n-vertex graph that has an edge-decomposition to a Hamilton cycle and n triangles. The list chromatic number of G is equal to three.

A graph G is k-edge-colorable if there exists $c: E(G) \to \{1, \ldots, k\}$ such that $c(e) \neq c(e')$ for any two distinct edges e and e' sharing a vertex. A graph G is k-edge-list-colorable if for every $L: E(G) \to 2^{\mathbb{N}}$ such that $|L(e)| \geq k$ for every $e \in E(G)$, there exists $c: E(G) \to \{1, \ldots, k\}$ such that $c(e) \in L(e)$ for every $e \in E(G)$ and $c(e) \neq c(e')$ for any two distinct edges e and e' sharing a vertex.

Four Color Theorem is known to be equivalent to the statement that every planar cubic bridgeless graph is 3-edge-colorable. Ellingham and Goddyn [Combinatorica 16 (1996), 343–352] proved the following stronger result (assuming Four Color Theorem).

Theorem. Every planar cubic bridgeless graph is 3-edge-list-colorable.

Exercises

- 1. Every plane quadrangulation is 2-colorable.
- 2. Let G be an n-vertex planar graph. If G has no cycle of length smaller ℓ and $n \ge \frac{\ell+2}{2}$, then G has at most $\frac{\ell}{\ell-2}(n-2)$ edges.
- 3. Every k-regular bipartite graph is k-edge-colorable.